Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opportunity to Usurp Reproductive Power of Royal Throne Keeps Worker Termites Home

07.10.2009
A new study by researchers at the University of Maryland suggests termite offspring stay in their birth colony to help their queen and king parents rather than leave to try and start their own family because their chance of inheriting the ‘reproductive throne’ is higher than their chance of successfully dispersing, finding a mate, and surviving to produce fertile offspring on their own.

In research published in the Proceedings of the National Academy of Sciences Early Edition (October 5, 2009), Professor Barbara L. Thorne and colleagues reveal how unrelated termites originating from two different families or colonies join forces after the death of their kings and queens, and then cooperate in a larger, stronger group in which new “reproductives” can emerge from the worker ranks of either or both original colonies, thus enabling both lineages to thrive.

"When young dampwood termite colonies nest in the same piece of wood, their interactions result in assassination and cannibalism of one or both sets of queens and kings followed by fusion of the two families into a single colony,” said Thorne.

These findings help unravel an evolutionary mystery that Charles Darwin himself recognized as a special problem to reconcile with fundamental concepts of natural selection. The majority of individuals in a termite (or ant, bee, or wasp) colony are “workers” who stay to help out in their parents’ colony their entire lives, but never reproduce. Why would natural selection (“survival of the fittest”) favor traits that reduce reproductive success? This research shows that unrelated families both benefit following colony encounters and that competition among families living within limited food and nesting resources played a prominent role in the evolution of the complex social structure in termites.

For this study, Thorne and her colleagues Philip Johns and Ken Howard, now at Bard College, and Nancy Breisch and Anahi Rivera at the University of Maryland, staged meetings between unrelated dampwood termite colonies (from the Termopsidae family) that mimicked natural meetings that occur under wood bark, and analyzed genetic markers.

These termites are members of the genus Zootermopsis, and share social, developmental, and habitat characteristics with ancient ancestors. They thus serve as a model system to draw inferences regarding how highly social behavior evolved in these insects 140 million years ago.

Termite colonies begin as a nuclear family: the queen, the king, and their offspring (workers and soldiers). Although most termite workers never reproduce, if either or both of the original parents die, one or more of their offspring can become a ‘replacement reproductive’ to carry on (usually incestuous) reproduction and growth of the colony. When young dampwood termite colonies nest in the same piece of wood, the neighbors meet and the two families merge into a single colony after a violent process during which one or both sets of queens and kings may be killed and eaten.

After the carnage, worker offspring may usurp the throne and the reproductive power and resources that go with it. Despite the original colonies being unrelated, individuals within the merged colony cooperate. This cooperation is best explained by the key finding of this paper, revealed through analysis of genetic markers: offspring in both original colonies have opportunities to develop into new (replacement) reproductives within the larger, merged colony, and termites from the two families may even interbreed. Thus both lineages (i.e. both original, unrelated families or young colonies) can ‘win’ and propagate in this dynamic.

Data in this PNAS paper add genetic evidence to support a theory that Thorne and her lab first proposed in a 2003 PNAS paper– the theory of “Accelerated Inheritance” to explain the evolution of highly social behavior and nonreproductive castes in termites.

The paper “Nonrelatives inherit colony resources in a primitive termite” was written by Philip M. Johns, Kenneth J. Howard, Nancy L. Breisch, Anahi Rivera, and Barbara L. Thorne. This research was supported by a National Science Foundation grant to Barbara L. Thorne, Department of Entomology, College of Chemical & Life Sciences, University of Maryland, College Park, Maryland.

Kelly Blake | Newswise Science News
Further information:
http://www.umd.edu
http://www.terp.umd.edu/

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>