Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opportunity to Usurp Reproductive Power of Royal Throne Keeps Worker Termites Home

07.10.2009
A new study by researchers at the University of Maryland suggests termite offspring stay in their birth colony to help their queen and king parents rather than leave to try and start their own family because their chance of inheriting the ‘reproductive throne’ is higher than their chance of successfully dispersing, finding a mate, and surviving to produce fertile offspring on their own.

In research published in the Proceedings of the National Academy of Sciences Early Edition (October 5, 2009), Professor Barbara L. Thorne and colleagues reveal how unrelated termites originating from two different families or colonies join forces after the death of their kings and queens, and then cooperate in a larger, stronger group in which new “reproductives” can emerge from the worker ranks of either or both original colonies, thus enabling both lineages to thrive.

"When young dampwood termite colonies nest in the same piece of wood, their interactions result in assassination and cannibalism of one or both sets of queens and kings followed by fusion of the two families into a single colony,” said Thorne.

These findings help unravel an evolutionary mystery that Charles Darwin himself recognized as a special problem to reconcile with fundamental concepts of natural selection. The majority of individuals in a termite (or ant, bee, or wasp) colony are “workers” who stay to help out in their parents’ colony their entire lives, but never reproduce. Why would natural selection (“survival of the fittest”) favor traits that reduce reproductive success? This research shows that unrelated families both benefit following colony encounters and that competition among families living within limited food and nesting resources played a prominent role in the evolution of the complex social structure in termites.

For this study, Thorne and her colleagues Philip Johns and Ken Howard, now at Bard College, and Nancy Breisch and Anahi Rivera at the University of Maryland, staged meetings between unrelated dampwood termite colonies (from the Termopsidae family) that mimicked natural meetings that occur under wood bark, and analyzed genetic markers.

These termites are members of the genus Zootermopsis, and share social, developmental, and habitat characteristics with ancient ancestors. They thus serve as a model system to draw inferences regarding how highly social behavior evolved in these insects 140 million years ago.

Termite colonies begin as a nuclear family: the queen, the king, and their offspring (workers and soldiers). Although most termite workers never reproduce, if either or both of the original parents die, one or more of their offspring can become a ‘replacement reproductive’ to carry on (usually incestuous) reproduction and growth of the colony. When young dampwood termite colonies nest in the same piece of wood, the neighbors meet and the two families merge into a single colony after a violent process during which one or both sets of queens and kings may be killed and eaten.

After the carnage, worker offspring may usurp the throne and the reproductive power and resources that go with it. Despite the original colonies being unrelated, individuals within the merged colony cooperate. This cooperation is best explained by the key finding of this paper, revealed through analysis of genetic markers: offspring in both original colonies have opportunities to develop into new (replacement) reproductives within the larger, merged colony, and termites from the two families may even interbreed. Thus both lineages (i.e. both original, unrelated families or young colonies) can ‘win’ and propagate in this dynamic.

Data in this PNAS paper add genetic evidence to support a theory that Thorne and her lab first proposed in a 2003 PNAS paper– the theory of “Accelerated Inheritance” to explain the evolution of highly social behavior and nonreproductive castes in termites.

The paper “Nonrelatives inherit colony resources in a primitive termite” was written by Philip M. Johns, Kenneth J. Howard, Nancy L. Breisch, Anahi Rivera, and Barbara L. Thorne. This research was supported by a National Science Foundation grant to Barbara L. Thorne, Department of Entomology, College of Chemical & Life Sciences, University of Maryland, College Park, Maryland.

Kelly Blake | Newswise Science News
Further information:
http://www.umd.edu
http://www.terp.umd.edu/

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>