Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researchers discover cellular mechanism that protects against disease

16.02.2010
Researchers at Oregon Health & Science University have discovered a new mechanism within human cells that constantly protects us against disease. P. Michael Conn, Ph.D., a researcher at the OHSU Oregon National Primate Research Center directed the work. The findings are reported in the Feb. 15 issue of the journal Proceedings of the National Academy of Sciences.

"Cells communicate with each other by releasing chemical signals, like hormones," explained Conn. "These chemical signals are detected and received by structures called 'receptors' which reside in the outer membranes of other cells. Sometimes environmental toxins or radiation can cause mutations in these receptors. When this happens, these mutant receptors make errors — they may activate unexpectedly or fail to activate at all — and this behavior results in disease."

Conn and his colleague Jody Janovick, B.S., R.Ph. a senior research associate discovered that when certain receptors, called G-protein coupled receptors, become "constitutively activated" by mutation, they are naturally detected by a mechanism in the body and targeted for destruction so they cannot cause disease.

"Unfortunately, the mechanism cannot detect all of these faulty receptors, meaning that the system is important, but not perfect," added Conn.

This discovery is important because G-protein coupled receptors are the largest class of drug-development targets used by pharmaceutical companies. This research increases understanding of how these drugs work and will lead to better understanding of basic cell mechanisms that are important for therapeutic development.

The research was funded by the National Institute of Child Health and Human Development, a component of the National Institutes of Health.

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>