Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU Langone Medical Center researchers identify key gene in deadly inflammatory breast cancer

16.06.2009
Aggressive, deadly and often misdiagnosed, inflammatory breast cancer (IBC) is the most lethal form of primary breast cancer, often striking women in their prime and causing death within 18 to 24 months.

Now, scientists from The Cancer Institute at NYU Langone Medical Center have identified a key gene—eIF4G1—that is overexpressed in the majority of cases of IBC, allowing cells to form highly mobile clusters that are responsible for the rapid metastasis that makes IBC such an effective killer.

The new findings, Essential Role for eIF4G1 Overexpression in Inflammatory Breast Cancer Pathogenesis, scheduled for advance online publication on Nature Cell Biology's website (Embargoed for June 14th, 2009 at 1:00PM EST) could lead to the identification of new approaches, therapies and a new class of drugs to target and treat IBC.

This would be a critical development in the fight against IBC, which respond poorly to chemotherapy, radiation or any other current treatments for breast cancer, according to the study's lead authors Dr. Robert Schneider, associate director for translational research at The Cancer Institute, co-director of breast cancer research, and the Albert B. Sabin Professor of Molecular Pathogenesis at NYU School of Medicine, and Dr. Deborah Silvera, a postdoctoral research fellow.

"The tragedy of IBC is that it is often misdiagnosed and misclassified. Rather than presenting as a 'typical' lump, IBC looks like an inflammation of the breast and is frequently mistaken for an infection. Physicians often prescribe antibiotics, losing valuable time for treating this fast-moving killer," says Dr. Schneider, noting that IBC accounts for several percent of all breast cancer cases but takes a high toll on mortality, with an incidence that is 50 percent higher in African American women. He adds that there has been little progress in treating IBC over the past two decades, and there are no drugs specifically for this form of cancer. "In fact, IBC has only recently been recognized as a unique, genetically distinct form of breast cancer."

Dr. Schneider and his colleagues found that the overexpression of the gene eIF4G1 reprograms how the IBC tumor cells make proteins. Other researchers have identified genes associated with IBC, but this is the first gene shown to orchestrate how IBC tumor cells form special structures—unique to this disease—known as "tumor emboli." These small clusters of highly mobile tumor cells are responsible for the rapid metastasis of IBC. Because these cell clumps are not stationary or fixed, they can quickly travel to other areas of the body.

"The good news is that we're beginning to understand IBC at both a molecular and genetic level," says Dr. Schneider. "We believe this gene is a target for new drug discovery, and we also believe it is possible to silence the gene without hurting normal cells. Our next step will be to focus on the genetic basis of this disease and look at the genetic changes underlying IBC to reveal more targets at the genetic level."

The study is co-authored by Dr. Silvia Formenti, chair of the department of radiation oncology at NYU Langone Medical Center and the Sandra and Edward H. Meyer Professor of Radiation Oncology at NYU School of Medicine, and Dr. Paul Levine of George Washington University, who contributed tissues.

Funding for the project was provided by the Department of Defense (DOD) Breast Cancer Research Program and the Breast Cancer Research Foundation (BCRF). The DOD funds a six-year, $6 million Center of Excellence grant for breast cancer to Dr. Formenti (PI) and Dr. Schneider (co-PI). The BCRF funds a four-year, $4 million grant to Dr. Formenti and Dr. Schneider as co-PIs.

About NYU Langone Medical Center

NYU Langone Medical Center is one of the nation's premier centers of excellence in health care, biomedical research, and medical education. For over 168 years, NYU physicians and researchers have made countless contributions to the practice and science of health care. Today the Medical Center consists of NYU School of Medicine, including the Smilow Research Center, the Skirball Institute of Biomolecular Medicine, and the Sackler Institute of Graduate Biomedical Sciences; the three hospitals of NYU Hospitals Center, Tisch Hospital, a 705-bed acute-care general hospital, Rusk Institute of Rehabilitation Medicine, the first and largest facility of its kind, and NYU Hospital for Joint Diseases, a leader in musculoskeletal care; and such major programs as the NYU Cancer Institute, the NYU Child Study Center, and the Hassenfeld Children's Center for Cancer and Blood Disorders.

The Cancer Institute

The NYU Cancer Institute is an NCI-designated cancer center. Its mission is to discover the origins of human cancer and to use that knowledge to eradicate the personal and societal burden of cancer in our community, the nation and the world. The center and its multidisciplinary team of experts provide access to the latest treatment options and clinical trials along with a variety of programs in cancer prevention, screening, diagnostics, genetic counseling and supportive services. For additional information, please visit: www.nyuci.org.

**Along with Dr. Robert Schneider, survivors of inflammatory breast cancer are also available for interview upon request.**

Lauren Woods | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>