Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Now researchers can see how unfolded proteins move in the cell

10.12.2014

When a large protein unfolds in transit through a cell, it slows down and can get stuck in traffic. Using a specialized microscope -- a sort of cellular traffic camera -- University of Illinois chemists now can watch the way the unfolded protein diffuses.

Studying the relationship between protein folding and transport could provide great insight into protein-misfolding diseases such as Alzheimer’s and Huntington’s. Chemistry professor Martin Gruebele and graduate students Minghao Guo and Hannah Gelman published their findings in the journal PLOS ONE.


By looking at the dynamics of how the unfolded protein moved in the cell (A), the researchers mapped areas in the cell with different rates of diffusion (B and C). | Photo courtesy Hannah Gelman

“We’re looking at the earliest stages of disease, the initial phases of transport of bad proteins,” Gruebele said. In the past, he said, much research on Alzheimer’s and similar disease focused on fibrils, large bundles of misfolded proteins that form in the brain.

“But now, we think the fibrils are just an end product that’s left over when the cell dies, and the actual killing mechanism has to do with migration of the protein to specific places in the cell like the outer membrane,” he said. “Understanding how these mechanisms work at a fundamental level is going to give people more handles on where to look to cure things.”

Researchers have hypothesized that an unfolded protein moves more slowly through the cell, because it would be a big, stringy mess rather than a tightly wrapped package. The Illinois team devised a way to measure how diffusion slows down when a protein unfolds using a fluorescence microscope, then used three-dimensional diffusion models to connect the protein’s unfolding to its motion.

The researchers found that the unfolded protein did indeed slow down, although its speed was not steady. It sometimes zoomed swiftly to a new location, and sometimes sat idling in one area, like a vehicle in stop-and-go rush-hour traffic. They were able to map out areas of the cell with different rates of diffusion, the cellular version of a speed limit.

The unfolded protein’s slowdown is not only due to size, however. The researchers did additional experiments to prove that the unfolded protein stuck to other molecules in the cell. A class of molecules in the cell called chaperones have the job of binding to parts of proteins that come unfolded, and the researchers found that the unfolded protein interacted more with chaperones than did the properly folded protein. However, when high numbers of proteins unfold, the cell’s systems can get overloaded and the chaperones can’t handle them all.

“Looking at something like this can start to give people a handle on why something that seems relatively harmless in vitro sometimes can have such a large effect in the cell,” Gelman said. “A change that makes a slightly less effective protein in the test tube can turn into a completely fatal mutation in the cell. First, the protein’s role in the cell can no longer be fulfilled. Second, as more and more unfold, they can disrupt the function of the whole cell.”

The researchers think that the unfolded protein is likely to stick to nonchaperone molecules, as well, causing other problems in the cell and disrupting the flow within a cell. They plan to use the specialized microscope to study other proteins and how unfolding affects their diffusion, to see if the properties they observed are universal or if each protein has its own response.

They also hope to use their method to watch how unfolded or misfolded proteins move to the cell’s membrane, where they aggregate and create the problems seen in Alzheimer’s and other diseases.

“There’s a whole cascade of things,” Gruebele said. “If you have a single car accident in the middle of nowhere, it’s really only a problem for the owner. But if you have a single car that stops in the middle of the road on the freeway in Los Angeles, very soon the entire freeway is going to be backed up. What we’re looking at is like the car stopping on the freeway. We’re not worried yet about what happens to the line of cars an hour later – that’s the fibril.”

The National Science Foundation supported this work.

Editor's note: To reach Martin Gruebele, call 217-333-1624; email: gruebele@scs.illinois.edu.

The paper, “Coupled Protein Diffusion and Folding in the Cell,” is available online.

Liz Ahlberg | University of Illinois
Further information:
http://news.illinois.edu/news/14/1209protein_unfolding_MarstinGruebele.html

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>