Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Notre Dame researchers offer new insights on cancer cell signaling

A pair of studies by a team of University of Notre Dame researchers led by Crislyn D'Souza-Schorey, professor of biological sciences, sheds light on a biological process which is activated across a vast range of malignancies.

Wnt proteins are a large family of proteins that active signaling pathways (a set of biological reactions in a cell) to control several vital steps in embryonic development. In adults, Wnt-mediated functions are frequently altered in many types of cancers and, specifically, within cell subpopulations that possess stem cell-like properties.

In two studies, one in the recent issue of the journal Molecular and Cellular Biology and a second, published earlier this year in Science Signaling, D'Souza-Schorey's laboratory reports on the importance of the protein "ARF6" in Wnt signaling.

The best documented role of Wnt is its triggering of the canonical (idealized or generalized) signaling pathway that leads to the stabilization of a protein called beta-catenin. This in turn leads to activation of various target genes that result in changes in a wide spectrum of cell behaviors.

"We have had a long standing interest in understanding the role of ARF6 in cell behavior," D'Souza-Schorey said. "ARF6 is an interesting molecule at the nexus of several important cell-signaling pathways. Our interest in this line of investigation has only been heightened by emerging reports from many labs that ARF6 activity is dramatically increased in several cancers. In our most recent study, we show how ARF6 can propagate Wnt signaling leading to proliferative phenotypes that are frequently seen in epithelial tumors (a growth of irregularly-shaped cells on the outer membrane of an organ or gland)."

In the paper published in Science Signaling, the laboratory collaborated with researchers at the University of Utah to document the importance of ARF6-regulated activation of canonical Wnt signaling in the spread of melanoma. The study showed that a small molecule that prevents ARF6 activation could stop tumor invasion and the spread of the cancer.

"The relevance of Wnt signaling in human cancers in manifest by the frequency with which this pathway is aberrantly activated across a wide range of malignancies," D'Souza-Schorey said. "Given the number of Wnts, Wnt signaling has been difficult to target therapeutically. It is important to note that while there are many mechanisms that drive aberrant Wnt/beta-catenin signaling in diverse cancers, these different mechanisms nearly always occur in a mutually exclusive manner. Thus, a better understanding of mechanisms involved in Wnt signaling transduction offers several target molecules for cancer drug development."

Notre Dame graduate students James Clancy, Oscar Pellon-Cardenas, Alanna Sedgwick and Henriette Uwimphuwe were co-authors on the two studies from D'Souza-Schorey's laboratory.

Crislyn D'Souza-Schorey | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>