Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Method Opens Door to Therapy with Human Muscle Stem Cells – Promising Method Developed

27.08.2014

Stem cells are essential for the repair of muscle damage, but all attempts to manipulate human muscle stem cells for therapy have thus far failed.

Now Dr. Andreas Marg and Prof. Simone Spuler of the Experimental and Clinical Research Center (ECRC), a joint cooperation between the Max Delbrück Center (MDC) and the Charité, have shown how this might work. They developed a method in which they did not isolate the muscle stem cells, but rather cultivated, proliferated and transplanted them along with their muscle fibers. Using this method in mice, they were able to successfully regenerate muscle tissue. Thus they have opened the door for the use of muscle stem cells to treat muscle diseases.*


Muscle fiber fragment (red) with human muscle stem cells (green)

(Photo: Andreas Marg/Copyright: ECRC)


In muscle fibers fragments muscle stem cells increase by 20- to 50-fold when kept cool in cell culture at 4 degrees Celsius. The photo shows muscle stem cells kept in cell culture for three weeks.

(Photo: Andreas Marg/Copyright: ECRC)

"Muscle stem cells, which we also refer to as satellite cells, can awaken in their stem cell niche after decades of quiescence and can then repair damaged muscle tissue," Professor Spuler explained. At the ECRC in Berlin-Buch, the neurologist heads the University Outpatient Clinic for Muscle Disorders and the Department of Muscle Sciences. She and her team are exploring the causes of muscle diseases. Evidence shows that satellite cells are active in people with severe muscle diseases such as Duchenne muscular dystrophy, a severe genetic disease in which the muscles degenerate. "But at some point,” she added, “the reservoir is depleted of muscle stem cells and muscle wasting cannot be stopped."

All attempts to rebuild muscle tissue by transplanting satellite cells in patients with Duchenne muscular dystrophy have failed. The transplanted cells are not viable. Furthermore, the use of other cells with potential to regenerate muscle cells has shown little success. These cells have only limited potential to regenerate muscle. But how is it possible to nevertheless use the body’s own self-renewal potential and the reconstruction potential of satellite cells?

The offer of developmental biologist Professor Carmen Birchmeier (MDC) to participate in the network project on satellite cells (SatNet) of the Federal Ministry of Education and Research pointed Professor Spuler and her co-workers in the right direction. One of the topics of the project was to elucidate why satellite cells rapidly lose their regeneration potential if they are kept in a cell culture. This led to the idea to cultivate the satellite cells together with the surrounding muscle tissue to see whether the cells, if they remain in their accustomed milieu, might possibly regenerate better.

Muscle biopsy specimens from young and old donors
After due approval and written, informed consent, Professor Spuler and Dr. Marg obtained specimens of fresh thigh muscle tissue from patients between 20 and 80 years of age from neurosurgeons of Helios Klinikum Berlin-Buch, which like the MDC is located close to the ECRC.

From the biopsy specimens, Professor Spuler and her co-workers dissected more than 1000 muscle fiber fragments, each about 2-3 millimeters long. Remarkably, the researchers found the number of stem cells in the individual tissue specimens to be independent of the age of the donor and that thousands of myoblasts developed from a small number of satellite cells. After further developmental steps, these fuse into muscle fibers.

Dr. Marg: “Satellite cells need to have their ‘local milieu’ around them”
Professor Spuler and her co-workers cultivated the muscle fiber fragments with the satellite cells, initially for up to three weeks. During this time, the satellite cells increased by 20- to 50-fold, but numerous connective tissue cells also developed in these cultures. To prevent this, the researchers concurrently subjected the muscle fragments to oxygen deprivation (hypoxia) and to cooling (hypothermia) at 4 degrees Celsius. Under these conditions, only satellite cells are able to survive in their stem cell niche, in contrast to the connective tissue cells. “Apparently, the satellite cells receive the proper nutrients in their own ‘local milieu’,” Dr. Marg said.

Human satellite cells cultivated and proliferated for the first time
For the first time, the ECRC researchers have succeeded in demonstrating that it is possible to cultivate and proliferate human satellite cells and to maintain their regeneration potential for several weeks. They have thus achieved an important prerequisite for using the patient’s own cells for therapeutic purposes.

First success in mice
The ECRC researchers then tried out their therapy approach in mice in which muscle regeneration had been inhibited by irradiation. They grafted the muscle fragments containing the satellite cells, which following the hypothermia had been kept for two weeks in culture dishes, into the tibalis anterior muscle. The researchers found that the muscles of animals that had been treated with these fiber fragments regenerated particularly well.

Objective: to couple satellite cells with gene therapy
However, a genetic muscle disease cannot be successfully treated alone by transplanting muscle fragments. Professor Spuler: “The idea is therefore to equip the satellite cells additionally with a healthy gene that repairs the defective gene and then to transfect it with the aid of a non-viral ‘gene taxi’ into the muscles to be treated. In a first experiment with a ‘reporter gene’ in the Petri dish, Professor Spuler and her co-workers proved that this is possible in principle. The reporter gene fluoresces green when it is transfected into the satellite cell. As gene taxi the researchers use the Sleeping Beauty transposon – a jumping gene that can change its position in the genome. This transposon technique was developed several years ago by Dr. Zsuzsanna Izsvák (MDC) and Dr. Zoltán Ivics (Paul Ehrlich Institute, Frankfurt) and is considered to be a very promising delivery vehicle (vector) for gene therapy.

Before the method developed by Professor Spuler and her group can be used to benefit patients, some hurdles remain to be taken. So far, the transplantation has succeeded in small mice muscles. In clinical trials, the scientists and physicians want to determine whether this technique can be used in large human thigh muscles, which may be severely altered due to a muscular disease.

*Journal of Clinical Investigation, http://dx.doi.org/10.1172/JCI63992
Human satellite cells have regenerative capacity and are genetically manipulable
Andreas Marg1, Helena Escobar2, Sina Gloy1,*, Markus Kufeld3, Joseph Zacher4, Andreas Spuler5, Carmen Birchmeier6, Zsuzsanna Izsvák2, Simone Spuler1
1 Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin
2 Mobile DNA, Max Delbrück Center for Molecular Medicine, Berlin
3 Clinic for Radiation Oncology and Radiotherapy, Charité Universitätsmedizin Berlin
4 Dept. of Orthopedic Surgery, HELIOS Klinikum Berlin-Buch, Berlin
5 Dept. of Neurosurgery, HELIOS Klinikum Berlin-Buch, Berlin
6 Developmental Biology / Signal transduction, Max Delbrück Center for Molecular Medicine, Berlin
*present address: Pediatric Hospital St. Nikolaus, Viersen, Germany

Contact:

arbara Bachtler
Leiterin Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: 030/ 9406 - 3896
Fax: 030/ 9406 - 3833
E-Mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/de

Verena Wolff
Pressereferentin
GB Unternehmenskommunikation
Charité – Universitätsmedizin Berlin
Charitéplatz 1
10117 Berlin
Tel.: 030/ 450 570 - 502
Fax: 030/ 450 570 - 940
E-Mail: verena.wolff@charite.de
http://www.charite.de

Barbara Bachtler | Max-Delbrück-Centrum

Further reports about: Cells ECRC Human MDC Max-Delbrück-Centrum Muscle Stem fragments muscles regenerate satellite specimens

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>