Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cause of high blood pressure and heart disease discovered

05.05.2014

Why phosphate rich foods can increase blood pressure and promote vascular calcifications has been discovered for the first time by scientists at the University of Veterinary Medicine, Vienna. The key is the hormone, FGF23 (Fibroblast Growth Factor 23), which is produced in the bones, and regulates blood levels of calcium and sodium via the kidneys. When the level of FGF23 is raised, as through a high phosphate diet, calcium and sodium accumulate, putting strain on the cardiovascular system. The study appears today in the journal, EMBO Molecular Medicine.

Phosphate rich foods include processed cheese, Parmesan, cola, baking powder and most processed foods. Phosphates are widely used in the food industry as preservatives and pH stabilizers. When large quantities of phosphates are consumed, production of the FGF23 hormone is stimulated, which has a negative effect on the cardiovascular system. Reinhold Erben, the head of the Unit of Physiology, Pathophysiology and Biophysics at the Vetmeduni Vienna, warns that “our phosphate consumption is relevant for our state of health”.

Over 500 million people around the world suffer from chronic kidney disease. Clinical studies have shown that these patients often develop cardiovascular diseases such as high blood pressure and vascular calcification. Until now, the connection between renal disease, the accumulation of the hormone FGF23 which is produced in the bones, and cardiovascular disease was unclear.

FGF23 controls renal excretion of sodium, and so the blood pressure

The researchers showed that FGF23 has a so called sodium conserving effect, meaning it controls the reabsorption of filtered sodium in the kidneys. Mice lacking FGF23 excrete higher amounts of sodium in their urine, resulting in low blood pressure. Animals with high FGF23 levels show high levels of sodium in their blood, and in turn, high blood pressure.

A raised level of FGF23 puts increased strain on the heart. Reinhold Erben explains that, “In patients with chronic renal disease, both the phosphate levels and the levels of FGF23 are chronically high. This often leads to cardiovascular disease.

FGF23 controls calcium, and therefore vascular calcification

A second study, published by Erben’s group in mid-January in EMBO, showed that FGF23 also controls calcium levels. As with sodium, the calcium is filtered in the kidneys and reabsorbed back into the body. If this reabsorption does not take place, the body loses calcium. Too much FGF23 leads to increased take up of calcium by the kidneys, and results in vascular calcification. Olena Andrukhova, the leading author of both studies, is keen to stress that, “Patients with chronic kidney disease often also suffer from cardiovascular disease. Raised FGF23 levels are partly responsible for this. Our results for the first time are able to explain this connection.”

Feedback loop between kidneys and bones

The hormone FGF23 is formed in the bones and controls the excretion of phosphate via the kidneys. When there is too much phosphate present in the body, the FGF23 level rises which leads to the excretion of excess phosphate. If too much phosphate is ingested with food, or if the excretion process via the kidneys does not work correctly, phosphate and FGF23 levels increase. A dangerous spiral begins that can have serious consequences on the overall health.

New critical values of FGF23 in science

The newly discovered functions of the hormone FGF23 were, until recently, attributed to another protein, αKlotho. Several scientific publications had assumed αKlotho to be the crucial factor for calcium conservation in the kidneys. With their newly published work, Erben and his colleagues show for the first time that FGF23 is responsible for this function, and not αKlotho. However, αKlotho is essential for the FGF23 effects, because it acts as a co-receptor for FGF23. Andrukhova stresses that “The focus in science is increasingly shifting from αKlotho to FGF23. The level of FGF23 in kidney patients can even indicate their life expectancy. The inhibition of FGF23 or its pathway could be a possibility to bring cardiovascular disease and vascular calcification under control.”

The article „FGF23 Regulates Renal Sodium Handling and Blood Pressure“ by Olena Andrukhova, Svetlana Slavic, Alina Smorodchenko, Ute Zeitz, Victoria Shalhoub, Beate Lanske, Elena E. Pohl and Reinhold G. Erben will be published today in the Journal EMBO Molecular Medicine.

The article „FGF23 promotes renal calcium reabsorption through the TRPV5 channel“ by Olena Andrukhova, Alina Smorodchenko, Monika Egerbacher, Carmen Streicher, Ute Zeitz, Regina Goetz, Victoria Shalhoub, Moosa Mohammadi, Elena E. Pohl, Beate Lanske and Reinhold G. Erben was published on the 17th of January 2014 in the Journal EMBO. <DOI: 10.1002/embj.201284188>

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Prof. Reinhold Erben
Unit of Physiology and Pathophysiology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-4550
reinhold.erben@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2014/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: EMBO Medicine Veterinary calcification controls hormone kidneys levels phosphate pressure sodium vascular

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>