Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New cause of high blood pressure and heart disease discovered


Why phosphate rich foods can increase blood pressure and promote vascular calcifications has been discovered for the first time by scientists at the University of Veterinary Medicine, Vienna. The key is the hormone, FGF23 (Fibroblast Growth Factor 23), which is produced in the bones, and regulates blood levels of calcium and sodium via the kidneys. When the level of FGF23 is raised, as through a high phosphate diet, calcium and sodium accumulate, putting strain on the cardiovascular system. The study appears today in the journal, EMBO Molecular Medicine.

Phosphate rich foods include processed cheese, Parmesan, cola, baking powder and most processed foods. Phosphates are widely used in the food industry as preservatives and pH stabilizers. When large quantities of phosphates are consumed, production of the FGF23 hormone is stimulated, which has a negative effect on the cardiovascular system. Reinhold Erben, the head of the Unit of Physiology, Pathophysiology and Biophysics at the Vetmeduni Vienna, warns that “our phosphate consumption is relevant for our state of health”.

Over 500 million people around the world suffer from chronic kidney disease. Clinical studies have shown that these patients often develop cardiovascular diseases such as high blood pressure and vascular calcification. Until now, the connection between renal disease, the accumulation of the hormone FGF23 which is produced in the bones, and cardiovascular disease was unclear.

FGF23 controls renal excretion of sodium, and so the blood pressure

The researchers showed that FGF23 has a so called sodium conserving effect, meaning it controls the reabsorption of filtered sodium in the kidneys. Mice lacking FGF23 excrete higher amounts of sodium in their urine, resulting in low blood pressure. Animals with high FGF23 levels show high levels of sodium in their blood, and in turn, high blood pressure.

A raised level of FGF23 puts increased strain on the heart. Reinhold Erben explains that, “In patients with chronic renal disease, both the phosphate levels and the levels of FGF23 are chronically high. This often leads to cardiovascular disease.

FGF23 controls calcium, and therefore vascular calcification

A second study, published by Erben’s group in mid-January in EMBO, showed that FGF23 also controls calcium levels. As with sodium, the calcium is filtered in the kidneys and reabsorbed back into the body. If this reabsorption does not take place, the body loses calcium. Too much FGF23 leads to increased take up of calcium by the kidneys, and results in vascular calcification. Olena Andrukhova, the leading author of both studies, is keen to stress that, “Patients with chronic kidney disease often also suffer from cardiovascular disease. Raised FGF23 levels are partly responsible for this. Our results for the first time are able to explain this connection.”

Feedback loop between kidneys and bones

The hormone FGF23 is formed in the bones and controls the excretion of phosphate via the kidneys. When there is too much phosphate present in the body, the FGF23 level rises which leads to the excretion of excess phosphate. If too much phosphate is ingested with food, or if the excretion process via the kidneys does not work correctly, phosphate and FGF23 levels increase. A dangerous spiral begins that can have serious consequences on the overall health.

New critical values of FGF23 in science

The newly discovered functions of the hormone FGF23 were, until recently, attributed to another protein, αKlotho. Several scientific publications had assumed αKlotho to be the crucial factor for calcium conservation in the kidneys. With their newly published work, Erben and his colleagues show for the first time that FGF23 is responsible for this function, and not αKlotho. However, αKlotho is essential for the FGF23 effects, because it acts as a co-receptor for FGF23. Andrukhova stresses that “The focus in science is increasingly shifting from αKlotho to FGF23. The level of FGF23 in kidney patients can even indicate their life expectancy. The inhibition of FGF23 or its pathway could be a possibility to bring cardiovascular disease and vascular calcification under control.”

The article „FGF23 Regulates Renal Sodium Handling and Blood Pressure“ by Olena Andrukhova, Svetlana Slavic, Alina Smorodchenko, Ute Zeitz, Victoria Shalhoub, Beate Lanske, Elena E. Pohl and Reinhold G. Erben will be published today in the Journal EMBO Molecular Medicine.

The article „FGF23 promotes renal calcium reabsorption through the TRPV5 channel“ by Olena Andrukhova, Alina Smorodchenko, Monika Egerbacher, Carmen Streicher, Ute Zeitz, Regina Goetz, Victoria Shalhoub, Moosa Mohammadi, Elena E. Pohl, Beate Lanske and Reinhold G. Erben was published on the 17th of January 2014 in the Journal EMBO. <DOI: 10.1002/embj.201284188>

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms.

Scientific Contact:
Prof. Reinhold Erben
Unit of Physiology and Pathophysiology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-4550

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153

Weitere Informationen:

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: EMBO Medicine Veterinary calcification controls hormone kidneys levels phosphate pressure sodium vascular

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>