Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New cause of high blood pressure and heart disease discovered


Why phosphate rich foods can increase blood pressure and promote vascular calcifications has been discovered for the first time by scientists at the University of Veterinary Medicine, Vienna. The key is the hormone, FGF23 (Fibroblast Growth Factor 23), which is produced in the bones, and regulates blood levels of calcium and sodium via the kidneys. When the level of FGF23 is raised, as through a high phosphate diet, calcium and sodium accumulate, putting strain on the cardiovascular system. The study appears today in the journal, EMBO Molecular Medicine.

Phosphate rich foods include processed cheese, Parmesan, cola, baking powder and most processed foods. Phosphates are widely used in the food industry as preservatives and pH stabilizers. When large quantities of phosphates are consumed, production of the FGF23 hormone is stimulated, which has a negative effect on the cardiovascular system. Reinhold Erben, the head of the Unit of Physiology, Pathophysiology and Biophysics at the Vetmeduni Vienna, warns that “our phosphate consumption is relevant for our state of health”.

Over 500 million people around the world suffer from chronic kidney disease. Clinical studies have shown that these patients often develop cardiovascular diseases such as high blood pressure and vascular calcification. Until now, the connection between renal disease, the accumulation of the hormone FGF23 which is produced in the bones, and cardiovascular disease was unclear.

FGF23 controls renal excretion of sodium, and so the blood pressure

The researchers showed that FGF23 has a so called sodium conserving effect, meaning it controls the reabsorption of filtered sodium in the kidneys. Mice lacking FGF23 excrete higher amounts of sodium in their urine, resulting in low blood pressure. Animals with high FGF23 levels show high levels of sodium in their blood, and in turn, high blood pressure.

A raised level of FGF23 puts increased strain on the heart. Reinhold Erben explains that, “In patients with chronic renal disease, both the phosphate levels and the levels of FGF23 are chronically high. This often leads to cardiovascular disease.

FGF23 controls calcium, and therefore vascular calcification

A second study, published by Erben’s group in mid-January in EMBO, showed that FGF23 also controls calcium levels. As with sodium, the calcium is filtered in the kidneys and reabsorbed back into the body. If this reabsorption does not take place, the body loses calcium. Too much FGF23 leads to increased take up of calcium by the kidneys, and results in vascular calcification. Olena Andrukhova, the leading author of both studies, is keen to stress that, “Patients with chronic kidney disease often also suffer from cardiovascular disease. Raised FGF23 levels are partly responsible for this. Our results for the first time are able to explain this connection.”

Feedback loop between kidneys and bones

The hormone FGF23 is formed in the bones and controls the excretion of phosphate via the kidneys. When there is too much phosphate present in the body, the FGF23 level rises which leads to the excretion of excess phosphate. If too much phosphate is ingested with food, or if the excretion process via the kidneys does not work correctly, phosphate and FGF23 levels increase. A dangerous spiral begins that can have serious consequences on the overall health.

New critical values of FGF23 in science

The newly discovered functions of the hormone FGF23 were, until recently, attributed to another protein, αKlotho. Several scientific publications had assumed αKlotho to be the crucial factor for calcium conservation in the kidneys. With their newly published work, Erben and his colleagues show for the first time that FGF23 is responsible for this function, and not αKlotho. However, αKlotho is essential for the FGF23 effects, because it acts as a co-receptor for FGF23. Andrukhova stresses that “The focus in science is increasingly shifting from αKlotho to FGF23. The level of FGF23 in kidney patients can even indicate their life expectancy. The inhibition of FGF23 or its pathway could be a possibility to bring cardiovascular disease and vascular calcification under control.”

The article „FGF23 Regulates Renal Sodium Handling and Blood Pressure“ by Olena Andrukhova, Svetlana Slavic, Alina Smorodchenko, Ute Zeitz, Victoria Shalhoub, Beate Lanske, Elena E. Pohl and Reinhold G. Erben will be published today in the Journal EMBO Molecular Medicine.

The article „FGF23 promotes renal calcium reabsorption through the TRPV5 channel“ by Olena Andrukhova, Alina Smorodchenko, Monika Egerbacher, Carmen Streicher, Ute Zeitz, Regina Goetz, Victoria Shalhoub, Moosa Mohammadi, Elena E. Pohl, Beate Lanske and Reinhold G. Erben was published on the 17th of January 2014 in the Journal EMBO. <DOI: 10.1002/embj.201284188>

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms.

Scientific Contact:
Prof. Reinhold Erben
Unit of Physiology and Pathophysiology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-4550

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153

Weitere Informationen:

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: EMBO Medicine Veterinary calcification controls hormone kidneys levels phosphate pressure sodium vascular

More articles from Life Sciences:

nachricht Atom-Sized Craters Make a Catalyst Much More Active
30.11.2015 | SLAC National Accelerator Laboratory

nachricht Hydra Can Modify Its Genetic Program
30.11.2015 | Université de Genève (University of Geneva)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

All Focus news of the innovation-report >>>



Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Latest News

Teamplay IT solution enables more efficient use of protocols

30.11.2015 | Trade Fair News

Greater efficiency and potentially reduced costs with new MRI applications

30.11.2015 | Trade Fair News

Modular syngo.plaza as a comprehensive solution – even for enterprise radiology

30.11.2015 | Trade Fair News

More VideoLinks >>>