Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural Interaction in Periods of Silence

22.11.2012
Tübinger neurophysiologists develop new method to study widespread networks of neurons responsible for our memory.

While in deep dreamless sleep, our hippocampus sends messages to our cortex and changes its plasticity, possibly transferring recently acquired knowledge to long-term memory. But how exactly is this done?


Hippocampal oscillations: Neural Interaction in Periods of Silence such as deep sleep.

Nikos Logothetis / Max Planck Institute for Biological Cybernetics.

Scientists from the Max Planck Institute for Biological Cybernetics have now developed a novel multimodal methodology called “neural event-triggered functional magnetic resonance imaging” (NET-fMRI) and presented the very first results obtained using it in experiments with both anesthetized and awake, behaving monkeys. The new methodology uses multiple-contact electrodes in combination with functional magnetic resonance imaging (fMRI) of the entire brain to map widespread networks of neurons that are activated by local, structure-specific neural events.

Many invasive studies in nonhuman primates and clinical investigations in human patients have demonstrated that the hippocampus, one of the oldest, most primitive brain structures, is largely responsible for the long term retention of information regarding places, specific events, and their contexts, that is, for the retention of so-called declarative memories. Without the hippocampus a person may be able to learn a manual task over a period of days, say, playing a simple instrument, but –remarkably – such a skill is acquired in the absence of any memory of having practiced the task before.

The consolidation of declarative memory is thought to occur in two subsequent steps. During the first step, the encoding phase, hippocampus rapidly binds neocortical representations to local memory traces, while during subsequent “off-line” periods of calmness or sleep the new traces are concurrently reactivated in both hippocampus and cortex to strengthen the cortico-cortical connections underlying learned representations. But what is the neural basis of this hippocampal-cortical dialog, and how does hippocampus communicate with the rest of the brain?

For the very first time, Nikos Logothetis, director of the Department for Physiology of Cognitive Processes at the Max Planck Institute for Biological Cybernetics and his team used so-called neural event triggered functional magnetic resonance imaging (NET-fMRI) in both anesthetized and awake, behaving monkeys to characterize the brain areas that consistently increased or decreased their activity in relationship to a certain type of fast hippocampal oscillations known as ripples. Ripples occur primarily during deep sleep and can be measured with electrophysiological methods. Using intracranial recordings of field potentials, the scientists demonstrated that the short periods of aperiodic, recurrent ripples are closely associated with reproducible cortical activations that occur concurrently with extensive activity suppression in other brain structures.

Interestingly, structures were suppressed whose activities could, in principle, interfere with the hippocampal-cortical dialog. The suppression of activity in the thalamus, for instance, reduces signals related to sensory processing, while the suppression of the basal ganglia, the pontine region and the cerebellar cortex may reduce signals related to other memory systems, such as that underlying procedural learning, for example riding a bicycle.

The aforementioned findings offer revealing insights into the large-scale organization of memory, a cognitive capacity emerging from the activation of widespread neural networks which were impossible to study in depth before now using either functional imaging alone or traditional single neuron recordings. Capacities such as perception, attention, learning and memory are actually best investigated using multimodal methodologies such as the NET-fMRI method employed in the MPI study. It is difficult to overstate the importance of the study of the neural mechanisms underlying such capacities, as the vast majority of neurological failures actually reflect dysfunctions of large-scale networks, including cortical and subcortical structures.

Original Publication:
Logothetis, N.K., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H.C., Besserve, M., Oeltermann, A. (2012) Hippocampal-cortical Interaction during Periods of Subcortical Silence. Nature, doi: 10.1038/nature11618

More Information about the research of Nikos Logothetis: http://www.kyb.tuebingen.mpg.de/research/dep/lo.html

Contact:
Prof. Dr. Nikos Logothetis
E-mail: nikos.logothetis@tuebingen.mpg.de

Stephanie Bertenbreiter (Public Relations)
Phone: +49 7071 601-1792
E-mail: presse-kyb@tuebingen.mpg.de
The Max Planck Institute for Biological Cybernetics works on the elucidation of cognitive processes. It employs about 300 people from more than 40 countries and is located at the Max Planck Campus in Tübingen, Germany. The Max Planck Institute for Biological Cybernetics is one of 80 research institutes that the Max Planck Society for the Advancement of Science maintains in Germany and abroad.

Stephanie Bertenbreiter | Max-Planck-Institut
Further information:
http://www.tuebingen.mpg.de/
http://www.kyb.tuebingen.mpg.de/
http://www.kyb.tuebingen.mpg.de/research/dep/lo.html

More articles from Life Sciences:

nachricht Godwits are flexible...when they get the chance
29.05.2015 | University of Groningen

nachricht Stress triggers key molecule to halt transcription of cell's genetic code
28.05.2015 | Stowers Institute for Medical Research

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Physicists precisely measure interaction between atoms and carbon surfaces

29.05.2015 | Physics and Astronomy

Godwits are flexible...when they get the chance

29.05.2015 | Life Sciences

Project start: New active substance targeting dreaded hospital pathogens

29.05.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>