Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology points the way to greener pastures

28.03.2011
Nourishing crops with synthetic ammonia (NH3) fertilizers has increasingly pushed agricultural yields higher, but such productivity comes at a price. Over-application of this chemical can build up nitrate ion (NO3–) concentrations in the soil—a potential groundwater poison and food source for harmful algal blooms. Furthermore, industrial manufacturing of ammonia is an energy-intensive process that contributes significantly to atmospheric greenhouse gases.

A research team led by Miho Yamauchi and Masaki Takata from the RIKEN SPring-8 Center in Harima has now discovered an almost ideal way to detoxify the effects of ammonia fertilizers[1]. By synthesizing photoactive bimetallic nanocatalysts that generate hydrogen gas from water using solar energy, the team can catalytically convert NO3– back into NH3 through an efficient route free from carbon dioxide emissions.

Replacing the oxygen atoms of NO3– with hydrogen is a difficult chemical trick, but chemists can achieve this feat by using nanoparticles of copper–palladium (CuPd) alloys to immobilize nitrates at their surfaces and catalyzing a reduction reaction with dissolved hydrogen atoms. However, the atomic distribution at the ‘nanoalloy’ surface affects the outcome of this procedure: regions with large domains of Pd atoms tend to create nitrogen gas, while well-mixed alloys preferentially produce ammonia.

According to Yamauchi, the challenge in synthesizing homogenously mixed CuPd alloys is getting the timing right—the two metal ions transform into atomic states at different rates, causing phase separation. Yamauchi and her team used the powerful x-rays of the SPring-8 Center’s synchrotron to characterize the atomic structure of CuPd synthesized with harsh or mild reagents. Their experiments revealed that a relatively strong reducing reagent called sodium borohydride gave alloys with near-perfect mixing down to nanoscale dimensions.

Most ammonia syntheses use hydrogen gas produced from fossil fuels, but the use of solar energy by the researchers avoids this. They found that depositing the nanoalloy onto photosensitive titanium dioxide (TiO2) yielded a material able to convert ultraviolet radiation into energetic electrons; in turn, these electrons stimulated hydrogen gas generation from a simple water/methanol solution (Fig. 1). When they added nitrate ions to this mixture, the CuPd/TiO2 catalyst converted nearly 80% into ammonia—a remarkable chemical selectivity that the researchers attribute to high concentrations of reactive hydrogen photocatalytically produced near the CuPd surface.

Yamauchi is confident that this approach can help reduce the ecological impact of many classical chemical hydrogenation reactions. “Considering the environmental problems we face, we have to switch from chemical synthesis using fossil-based hydrogen to other clean processes,” she says.

The corresponding author for this highlight is based at the Structural Materials Science Laboratory, RIKEN SPring-8 Center

Journal information
[1] Yamauchi, M., Abe, R., Tsukuda, T., Kato. K. & Takata, M. Highly selective ammonia synthesis from nitrate with photocatalytically generated hydrogen on CuPd/TiO2. Journal of the American Chemical Society 133, 1150–1152 (2011).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6545
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>