Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology points the way to greener pastures

28.03.2011
Nourishing crops with synthetic ammonia (NH3) fertilizers has increasingly pushed agricultural yields higher, but such productivity comes at a price. Over-application of this chemical can build up nitrate ion (NO3–) concentrations in the soil—a potential groundwater poison and food source for harmful algal blooms. Furthermore, industrial manufacturing of ammonia is an energy-intensive process that contributes significantly to atmospheric greenhouse gases.

A research team led by Miho Yamauchi and Masaki Takata from the RIKEN SPring-8 Center in Harima has now discovered an almost ideal way to detoxify the effects of ammonia fertilizers[1]. By synthesizing photoactive bimetallic nanocatalysts that generate hydrogen gas from water using solar energy, the team can catalytically convert NO3– back into NH3 through an efficient route free from carbon dioxide emissions.

Replacing the oxygen atoms of NO3– with hydrogen is a difficult chemical trick, but chemists can achieve this feat by using nanoparticles of copper–palladium (CuPd) alloys to immobilize nitrates at their surfaces and catalyzing a reduction reaction with dissolved hydrogen atoms. However, the atomic distribution at the ‘nanoalloy’ surface affects the outcome of this procedure: regions with large domains of Pd atoms tend to create nitrogen gas, while well-mixed alloys preferentially produce ammonia.

According to Yamauchi, the challenge in synthesizing homogenously mixed CuPd alloys is getting the timing right—the two metal ions transform into atomic states at different rates, causing phase separation. Yamauchi and her team used the powerful x-rays of the SPring-8 Center’s synchrotron to characterize the atomic structure of CuPd synthesized with harsh or mild reagents. Their experiments revealed that a relatively strong reducing reagent called sodium borohydride gave alloys with near-perfect mixing down to nanoscale dimensions.

Most ammonia syntheses use hydrogen gas produced from fossil fuels, but the use of solar energy by the researchers avoids this. They found that depositing the nanoalloy onto photosensitive titanium dioxide (TiO2) yielded a material able to convert ultraviolet radiation into energetic electrons; in turn, these electrons stimulated hydrogen gas generation from a simple water/methanol solution (Fig. 1). When they added nitrate ions to this mixture, the CuPd/TiO2 catalyst converted nearly 80% into ammonia—a remarkable chemical selectivity that the researchers attribute to high concentrations of reactive hydrogen photocatalytically produced near the CuPd surface.

Yamauchi is confident that this approach can help reduce the ecological impact of many classical chemical hydrogenation reactions. “Considering the environmental problems we face, we have to switch from chemical synthesis using fossil-based hydrogen to other clean processes,” she says.

The corresponding author for this highlight is based at the Structural Materials Science Laboratory, RIKEN SPring-8 Center

Journal information
[1] Yamauchi, M., Abe, R., Tsukuda, T., Kato. K. & Takata, M. Highly selective ammonia synthesis from nitrate with photocatalytically generated hydrogen on CuPd/TiO2. Journal of the American Chemical Society 133, 1150–1152 (2011).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6545
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>