Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology points the way to greener pastures

28.03.2011
Nourishing crops with synthetic ammonia (NH3) fertilizers has increasingly pushed agricultural yields higher, but such productivity comes at a price. Over-application of this chemical can build up nitrate ion (NO3–) concentrations in the soil—a potential groundwater poison and food source for harmful algal blooms. Furthermore, industrial manufacturing of ammonia is an energy-intensive process that contributes significantly to atmospheric greenhouse gases.

A research team led by Miho Yamauchi and Masaki Takata from the RIKEN SPring-8 Center in Harima has now discovered an almost ideal way to detoxify the effects of ammonia fertilizers[1]. By synthesizing photoactive bimetallic nanocatalysts that generate hydrogen gas from water using solar energy, the team can catalytically convert NO3– back into NH3 through an efficient route free from carbon dioxide emissions.

Replacing the oxygen atoms of NO3– with hydrogen is a difficult chemical trick, but chemists can achieve this feat by using nanoparticles of copper–palladium (CuPd) alloys to immobilize nitrates at their surfaces and catalyzing a reduction reaction with dissolved hydrogen atoms. However, the atomic distribution at the ‘nanoalloy’ surface affects the outcome of this procedure: regions with large domains of Pd atoms tend to create nitrogen gas, while well-mixed alloys preferentially produce ammonia.

According to Yamauchi, the challenge in synthesizing homogenously mixed CuPd alloys is getting the timing right—the two metal ions transform into atomic states at different rates, causing phase separation. Yamauchi and her team used the powerful x-rays of the SPring-8 Center’s synchrotron to characterize the atomic structure of CuPd synthesized with harsh or mild reagents. Their experiments revealed that a relatively strong reducing reagent called sodium borohydride gave alloys with near-perfect mixing down to nanoscale dimensions.

Most ammonia syntheses use hydrogen gas produced from fossil fuels, but the use of solar energy by the researchers avoids this. They found that depositing the nanoalloy onto photosensitive titanium dioxide (TiO2) yielded a material able to convert ultraviolet radiation into energetic electrons; in turn, these electrons stimulated hydrogen gas generation from a simple water/methanol solution (Fig. 1). When they added nitrate ions to this mixture, the CuPd/TiO2 catalyst converted nearly 80% into ammonia—a remarkable chemical selectivity that the researchers attribute to high concentrations of reactive hydrogen photocatalytically produced near the CuPd surface.

Yamauchi is confident that this approach can help reduce the ecological impact of many classical chemical hydrogenation reactions. “Considering the environmental problems we face, we have to switch from chemical synthesis using fossil-based hydrogen to other clean processes,” she says.

The corresponding author for this highlight is based at the Structural Materials Science Laboratory, RIKEN SPring-8 Center

Journal information
[1] Yamauchi, M., Abe, R., Tsukuda, T., Kato. K. & Takata, M. Highly selective ammonia synthesis from nitrate with photocatalytically generated hydrogen on CuPd/TiO2. Journal of the American Chemical Society 133, 1150–1152 (2011).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6545
http://www.researchsea.com

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>