Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU Chemist Discovers Shortcut for Processing Drugs

09.03.2011
Prolific chemist adds another breakthrough to long list of accomplishments

A prolific University of Missouri chemist has discovered a quicker and easier method for pharmaceutical companies to make certain drugs.

Jerry Atwood, Curator's Professor and Chair of the Department of Chemistry
Jerry Atwood, Curator’s Professor and Chair of the Department of Chemistry in the MU College of Arts and Science, has recently published a paper – his 663rd in a refereed journal – that states that highly pressurized carbon dioxide at room temperature could replace the time consuming and expensive methods currently used to manufacture certain pharmaceutical drugs.

In the article, “A New Strategy of Transforming Pharmaceutical Crystal Forms,” published in a recent edition of the Journal of the American Chemical Society (JACS), Atwood and a team of researchers explain how manufacturers of popular drugs such as clarithromycin (an antibiotic drug) and lansoprazole (an acid reflux drug) could benefit from this process.

To develop basic drugs that are safe for people to consume, manufacturers must utilize chemistry to make specific crystals that constitute the eventual compound. Depending on the drug, current methods may include high-temperature heating, raw material altering, washing, filtering, and intensive drying. Atwood’s team found that pressurizing carbon dioxide can bring about the desired crystallization “with ease” and at normal room temperatures. Atwood said this discovery has the potential to streamline work flow and provide more safety for those who work with these chemicals.

“I believe this could have huge implications for the pharmaceutical industry,” Atwood said. “In addition to streamlining processes, pressurizing gas could circumvent some of the more difficult techniques used on an industrial scale, leading to better pharmaceuticals, more effective treatments and ultimately a lower price.”

Atwood points out that cost savings may be minimal to consumers, however, as drug companies set prices to recoup billion dollar investments in multiple-drug trials. Only one of every five clinically tested drugs makes it to market, Atwood said, and the companies must make a profit on the drug that becomes widely used.

The JACS paper was recognized by Chemical & Engineering News in its “News of the Week,” an accomplishment Atwood has achieved nine times. Despite all of his success, Atwood remains focused on his ultimate goal: to develop a chemotherapy drug with a magnetic component that could bring targeted delivery of medication, rather than the bloodstream saturation process used now.

“When I lecture a group of world-class scientists, I tell them the good news and the bad news,” Atwood said. “The bad news is that we must make a major breakthrough like curing a disease. If we can do that, then our field of chemistry will flourish, and we will pay society back for their investment. If we fail to make the breakthrough, society won’t support what we are doing forever. The good news is that just one of our research groups has to do it, so the pressure is on all or us, not just on you or me.”

Atwood is one of the top 50 chemists in the world in terms of citations and has published 663 papers in his career. The more citations a scientist has, the higher their rating known as the Hirsch index is. The H-index ranks international researchers according to the volume of published articles and the number of times those articles are cited, thus measuring a particular scientist’s influence. An H-index of 50 places a chemist in the top 500 worldwide. Atwood has an H-index of 83.

Steven Adams | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>