Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel MRI Sensor Provides Molecular View of the Brain

01.03.2010
MIT neuroscientists have designed a new MRI sensor that responds to the neurotransmitter dopamine, an achievement that may significantly improve the specificity and resolution of future brain imaging procedures.

Although functional magnetic resonance imaging (fMRI) has enhanced our understanding of brain function since it was first introduced about 20 years ago, the technology actually measures blood flow, which is a slow and indirect readout of neural activity.

When a brain region becomes active, blood vessels in that region dilate, causing increased blood flow to the site. Iron found in the blood’s hemoglobin mediates a magnetic change that is detected by MRI.

But MRI sensors that directly and rapidly respond to chemicals involved in the brain’s information processing would provide a much more precise measurement of brain activity. This technology has not been available until now.

“We have designed an artificial molecular probe that changes its magnetic properties in response to the neurotransmitter dopamine,” explains Alan Jasanoff, an associate professor of biological engineering at MIT and senior author of the Nature Biotechnology paper describing the work. “This new tool connects molecular phenomena in the nervous system with whole-brain imaging techniques, allowing us to probe very precise processes and relate them to the overall function of the brain and of the organism. With molecular fMRI, we can say something much more specific about the brain’s activity and circuitry than we could using conventional blood-related fMRI.” Jasanoff holds appointments in the McGovern Institute for Brain Research and in the departments of Brain and Cognitive Sciences and Nuclear Science and Engineering.

Measuring dopamine in the living brain is of particular interest to neuroscientists because this neurotransmitter plays a role in motivation, reward, addiction, and several neurodegenerative conditions including Parkinson’s disease.

To design a molecular probe that binds to dopamine, Jasanoff’’s group, in collaboration with MIT Institute Professor Robert Langer and the laboratory of Frances Arnold at Caltech, borrowed an evolutionary trick. Starting with a magnetically active protein similar to hemoglobin, the researchers showed that it could be visualized by MRI, and then ‘evolved’ the protein – through rounds of artificial mutation and selection – to bind specifically to dopamine.

“By harnessing the power of protein engineering we now have the ability to advance neuroscience through more precise non-invasive imaging of the brain,” says Mikhail Shapiro, joint first author of the study and a former graduate student supervised by Jasanoff and Langer. Shapiro devised the directed evolution approach used to make MRI sensors in the study.

After confirming that the protein responded to dopamine produced by cells in test tubes, the researchers tested whether it could detect dopamine in the living brain. They found a change in the MRI intensity precisely when they artificially triggered dopamine release in the presence of the sensor.

“This means that we can see signal changes in the brain due to the modulation of dopamine,” explained Gil Westmeyer, joint first author of the study and a postdoctoral fellow in Jasanoff’s lab who directed the in vivo work. “This novel MRI sensor will enable us to study the spatial and temporal patterns of dopamine transmission over the vast and heterogeneous dopamine network in the brain.”

Next Steps: Jasanoff’s team will use the new MRI sensor to study how the spatial and temporal patterns of dopamine release relate to an animal’s experience of reward, learning, and reinforcement. They hope to develop a related suite of new tools to detect different molecular events across the whole brain, and they expect to see additional gains in sensitivity through improved experimental paradigms and further molecular engineering.

While synthetic molecules are typically introduced into the brain with external devices, Jasanoff’s new sensor is based on a protein, which means that researchers may also have the ability to genetically encode the sensor to express on its own. The new dopamine sensor is an important tool for animal research, but the researchers also hope one day to develop agents that can measure neural activity in the human brain.

Source: Shapiro MG, Westmeyer GG, Romero PA, Szablowski JO, Küster B, Shah A, Otey CR, Langer R, Arnold FH, & Jasanoff A. Directed evolution of an MRI contrast agent for noninvasive imaging of dopamine. Nature Biotechnology. 28 February 2010. DOI: 10.1038/nbt.1609

Funding: Fannie and John Hertz Foundation, Paul and Daisy Soros Fellowship, Dana Foundation Brain & Immuno-Imaging Grant, Raymond & Beverley Sackler Fellowship, NIH, Caltech Jacobs Institute for Molecular Medicine, McGovern Institute for Brain Research.

Jen Hirsch | Newswise Science News
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>