Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel MRI Sensor Provides Molecular View of the Brain

01.03.2010
MIT neuroscientists have designed a new MRI sensor that responds to the neurotransmitter dopamine, an achievement that may significantly improve the specificity and resolution of future brain imaging procedures.

Although functional magnetic resonance imaging (fMRI) has enhanced our understanding of brain function since it was first introduced about 20 years ago, the technology actually measures blood flow, which is a slow and indirect readout of neural activity.

When a brain region becomes active, blood vessels in that region dilate, causing increased blood flow to the site. Iron found in the blood’s hemoglobin mediates a magnetic change that is detected by MRI.

But MRI sensors that directly and rapidly respond to chemicals involved in the brain’s information processing would provide a much more precise measurement of brain activity. This technology has not been available until now.

“We have designed an artificial molecular probe that changes its magnetic properties in response to the neurotransmitter dopamine,” explains Alan Jasanoff, an associate professor of biological engineering at MIT and senior author of the Nature Biotechnology paper describing the work. “This new tool connects molecular phenomena in the nervous system with whole-brain imaging techniques, allowing us to probe very precise processes and relate them to the overall function of the brain and of the organism. With molecular fMRI, we can say something much more specific about the brain’s activity and circuitry than we could using conventional blood-related fMRI.” Jasanoff holds appointments in the McGovern Institute for Brain Research and in the departments of Brain and Cognitive Sciences and Nuclear Science and Engineering.

Measuring dopamine in the living brain is of particular interest to neuroscientists because this neurotransmitter plays a role in motivation, reward, addiction, and several neurodegenerative conditions including Parkinson’s disease.

To design a molecular probe that binds to dopamine, Jasanoff’’s group, in collaboration with MIT Institute Professor Robert Langer and the laboratory of Frances Arnold at Caltech, borrowed an evolutionary trick. Starting with a magnetically active protein similar to hemoglobin, the researchers showed that it could be visualized by MRI, and then ‘evolved’ the protein – through rounds of artificial mutation and selection – to bind specifically to dopamine.

“By harnessing the power of protein engineering we now have the ability to advance neuroscience through more precise non-invasive imaging of the brain,” says Mikhail Shapiro, joint first author of the study and a former graduate student supervised by Jasanoff and Langer. Shapiro devised the directed evolution approach used to make MRI sensors in the study.

After confirming that the protein responded to dopamine produced by cells in test tubes, the researchers tested whether it could detect dopamine in the living brain. They found a change in the MRI intensity precisely when they artificially triggered dopamine release in the presence of the sensor.

“This means that we can see signal changes in the brain due to the modulation of dopamine,” explained Gil Westmeyer, joint first author of the study and a postdoctoral fellow in Jasanoff’s lab who directed the in vivo work. “This novel MRI sensor will enable us to study the spatial and temporal patterns of dopamine transmission over the vast and heterogeneous dopamine network in the brain.”

Next Steps: Jasanoff’s team will use the new MRI sensor to study how the spatial and temporal patterns of dopamine release relate to an animal’s experience of reward, learning, and reinforcement. They hope to develop a related suite of new tools to detect different molecular events across the whole brain, and they expect to see additional gains in sensitivity through improved experimental paradigms and further molecular engineering.

While synthetic molecules are typically introduced into the brain with external devices, Jasanoff’s new sensor is based on a protein, which means that researchers may also have the ability to genetically encode the sensor to express on its own. The new dopamine sensor is an important tool for animal research, but the researchers also hope one day to develop agents that can measure neural activity in the human brain.

Source: Shapiro MG, Westmeyer GG, Romero PA, Szablowski JO, Küster B, Shah A, Otey CR, Langer R, Arnold FH, & Jasanoff A. Directed evolution of an MRI contrast agent for noninvasive imaging of dopamine. Nature Biotechnology. 28 February 2010. DOI: 10.1038/nbt.1609

Funding: Fannie and John Hertz Foundation, Paul and Daisy Soros Fellowship, Dana Foundation Brain & Immuno-Imaging Grant, Raymond & Beverley Sackler Fellowship, NIH, Caltech Jacobs Institute for Molecular Medicine, McGovern Institute for Brain Research.

Jen Hirsch | Newswise Science News
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

nachricht Party discipline for jumping genes
22.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>