Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moss beats Human - Simple moss plants outperform us by gene number

05.08.2013
At the genetic level, mosses are more complex than humans: A group of German, Belgian and Japanese scientists, coordinated by Professor Ralf Reski from the University of Freiburg, Germany, published a new study where they describe 32,275 protein-encoding genes from the moss Physcomitrella patens.

This is about 10,000 genes more than the human genome contains. Mosses are tiny plants with a simple body plan: They have no roots, no flowers and do not produce seeds. Therefore, they were for a long time they were considered to be simple organisms also at the genetic level.


Tiny moss has more genes than humans have
© Plant Biotechnology, University of Freiburg, Germany

The moss Physcomitrella was chosen by Reski early on as the organism of choice and is now well established as a model species for basic biology, biotechnology, and synthetic biology on a worldwide scale. Consequently, the US Department of Energy Joint Genome Institute (US DoE JGI) has ennobled the Physcomitrella genome as a “flagship genome”. The experts believe that flagship genomes contain information that will help us cope with major challenges occurring during global climate change. The expectations include improved crop yields, disease and insect resistance, drought tolerance, and more efficient biofuel production.

For their recent study the scientists collected all available information on the moss genome as well as transcript evidence and used this data for a completely new bioinformatic analysis. The result is freely available on the community resource www.cosmoss.org, developed and maintained by the Chair of Plant Biotechnology in Freiburg. By combining all DNA and RNA data, the scientists were not only able to annotate the 32,275 genes that encode proteins but also to reveal the so-called “dark matter of the genome”, i.e. those genomic regions that are transcribed into small non-coding RNAs like microRNAs.

“One of our intriguing findings is that 13 per cent of the Physcomitrella genes have no clear relatives in any other sequenced organism so far. Analysing these orphan genes more deeply will reveal the hidden treasures of the moss genome”, Reski says. “Although it seems annoying that mosses outperform humans greatly by gene number, it is exactly this feature that may secure our future.”

Ralf Reski heads the Freiburg Chair of Plant Biotechnology. The biologist is a member of the Cluster of Excellence BIOSS – Centre for Biological Signalling Studies and Senior Fellow at FRIAS, the Freiburg Institute for Advanced Studies of the University of Freiburg. In addition, Reski is co-founder of the Trinational Institute for Plant Research TIP, and, effective from October on, Senior Fellow at USIAS, the University of Strasbourg Institute for Advanced Study, France.

The original publication is:
Andreas Zimmer, Daniel Lang et al. (2013): Reannotation and extended community resources of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics 14, 498. It can be viewed as open access publication under http://www.biomedcentral.com/1471-2164/14/498/abstract
Contact:
Prof. Dr. Ralf Reski
Chair Plant Biotechnology
Faculty of Biology
Albert-Ludwigs-University Freiburg, Germany
Tel.: +49-761-203-6969
E-Mail: pbt@biologie.uni-freiburg.de

Melanie Hübner | Uni Freiburg
Further information:
http://www.plant-biotech.net
http://www.uni-freiburg.de

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>