Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule shuts down food intake and turns on 'siesta mode'

28.11.2008
Researchers have identified a molecule that tells your brain your stomach is full – signaling that it's time to say no to a second piece of pumpkin pie and push back from the Thanksgiving table.

In studies with mice and rats, researchers have found that a chemical messenger called NAPE is made in the small intestine after the animals ate a greasy meal. After eating, NAPE – N-acylphosphatidylethanolamine, a mouthful in itself -- enters the blood and travels to the brain, where it quashes hunger signals. Rats treated with extra NAPE for five days ate less and lost weight, hinting that studying NAPE could help researchers design better appetite suppressants or obesity drugs.

Howard Hughes Medical Institute investigator Gerald Shulman at Yale School of Medicine led the research team, which reported its findings in the November 26, 2008, issue of the journal Cell. Shulman's research group is well known for its work on understanding how insulin resistance develops and leads to diabetes. In the course of that research, his team developed a sensitive system to identify and measure lipids in tissue samples. After seeing the power of that system in his diabetes research, Shulman was eager to see if it might also be applied to understanding obesity.

Some 300 million adults worldwide are severely overweight and at risk for life-threatening illnesses such as type 2 diabetes and cardiovascular disease. But obesity is difficult to treat. "We do not have good medical therapies for obesity," Shulman says, noting that the small number of diet drugs on the market now come with intolerable side effects and have only modest impacts on weight. "It's very important to find other targets that might affect food intake."

Despite many years studying the physiology of appetite and hunger, researchers still do not have a clear picture of how the brain keeps tabs on fat consumption. Fat is effective at satisfying hunger, so Shulman and his colleagues at Yale and the University of Cincinnati decided to see if they could find out whether the brain senses lipid intake directly. If they could learn how that happens, they suspected, their findings might point toward a new treatment for obesity.

The team used Shulman's lipid analysis system to investigate what happens to fat that enters the blood after ingesting a high-fat meal. The scientists reasoned that the fat derivatives that enter the bloodstream might themselves serve as messengers to signal the brain that the body has been fed. They used this approach to compare the lipids present in blood plasma from rats that had fasted or eaten, and they zeroed in on NAPE.

They found only low levels of NAPE in the blood of rats that had fasted for 12 hours. The level of NAPE shot up 40 to 50 percent in animals that had dined on high-fat chow. Furthermore, NAPE didn't increase in rodents that ate only protein or carbohydrate, suggesting that NAPE levels reflect the amount of fat eaten in a meal.

The researchers found that when they injected synthetic NAPE into the abdominal cavity or blood, the rodents' appetites diminished substantially. The more NAPE they received, the less food they ate. "It's really quite effective," Shulman says. "At the highest doses, it keeps the animals from eating for up to 12 hours." At a low dose—comparable to the spike in NAPE that occurs naturally after a meal—the rodents still ate 25 percent less than controls. They even acted full, going into "siesta mode" as if they had just eaten, Shulman says, noting that additional tests confirmed that the animals were only lethargic, not ill or incapacitated.

When the researchers delivered tiny amounts of NAPE directly into the brain, it had the same effect as a larger dose delivered to the blood. This suggests that the compound communicates directly with the brain, Shulman says.

Indeed, they found that NAPE injected into the blood did cross the blood-brain barrier and was concentrated in the hypothalamus, a specific region of the brain that governs hunger. There, they found that NAPE calmed neurons that stimulate appetite. The team made those conclusions after inspecting brain samples that had been stained to reveal the cells in which NAPE was active. "Most appetite regulation is hypothalamic, so we were excited that [NAPE] was working centrally," Shulman says. "That suggests [NAPE] is involved in the gut-brain axis. It's a way the gut communicates to the brain that there's energy coming in and you need to shut down food intake."

The team next wanted to know if NAPE would stay effective with longer-term treatment, so they outfitted 22 rats with vests that allowed them to move freely in their cages while they hooked up to an IV that dispensed NAPE. The vests permitted the rats to eat, sleep, and rest while still receiving infusions of NAPE. Over five days, control rats continued to gain weight normally, but NAPE-treated rats ate less and lost ten percent of their body weight—while appearing otherwise well and healthy.

Shulman and his team are now monitoring NAPE levels in humans, to see if they rise after a meal the same way they do in rodents. They also plan to test NAPE for effects on appetite in non-human primates. If these studies parallel the results they have observed in mice and rats, Shulman says, a clinical trial with NAPE or NAPE-like compounds may be on the horizon.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>