Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moffitt researchers identify gene variations that may help predict cancer treatment response

09.08.2013
Moffitt Cancer Center Researchers Identify Gene Variations in Lung Cancer Patients That May Help Predict an Individual’s Treatment Response

Researchers at the Moffitt Cancer Center have identified four inherited genetic variants in non-small cell lung cancer patients that can help predict survival and treatment response. Their findings could help lead to more personalized treatment options and improved outcomes for patients.

The researchers analyzed DNA sequence variations in 651 non-small cell lung cancer patients, paying close attention to 53 inflammation-related genes. They found that four of the top 15 variants associated with survival were located on one specific gene (TNFRSF10B). In the study, these variants increased the risk of death as much as 41 percent. The researchers also found that patients with these gene variations had a greater risk of death if their treatment plans included surgery without chemotherapy compared to patients who were treated with chemotherapy following surgery.

“There are few validated biomarkers that can predict survival or treatment response for patients with non-small cell lung cancer,” said study lead author Matthew B. Schabath, Ph.D., assistant member of the Cancer Epidemiology Program at Moffitt. “Having a validated genetic biomarker based on inherited differences in our genes may allow physicians to determine the best treatments for an individual patient based on their unique genetics.”

Lung cancer is the leading cause of cancer-related deaths in the United States for both men and women. Additionally, non-small cell lung cancer represents more than 80 percent of lung cancer diagnoses.

“Non-small cell lung cancer has an extremely poor five-year survival rate. Only about 16 percent of all patients survive for five years and tragically, only about four percent of patients with late stage disease live longer than five years,” explained Schabath. “Part of the difficulty in treating lung cancer is the genetic diversity of patients and their tumors. Using a personalized medicine approach to match the best treatment option to a patient based on his or her genetics will lead to better outcomes.”

The researchers noted that there has been no published data examining the association of these four specific variants on cancer risk or outcome, although studies have reported associations with other gene variants in the same gene family as TNFRSF10B.

The study can be found in the July issue of Carcinogenesis.

The work was supported by funding from the State of Florida through the James & Esther King Biomedical Research Program (09KN-15), a National Institutes of Health SPORE grant (P50 CA119997), an American Cancer Society grant (93-032-13), and a grant from the National Cancer Institute (5 UC2 CA 148322-02).

About Moffitt Cancer Center
Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s excellence in research, its contributions to clinical trials, prevention and cancer control. Since 1999, Moffitt has been listed in U.S. News & World Report as one of “America’s Best Hospitals” for cancer. With more than 4,200 employees, Moffitt has an economic impact on the state of nearly $2 billion. For more information, visit MOFFITT.org, and follow the Moffitt momentum on Facebook, twitter and YouTube.

Media release by Florida Science Communications

Kim Polacek | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>