Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moffitt researchers identify gene variations that may help predict cancer treatment response

09.08.2013
Moffitt Cancer Center Researchers Identify Gene Variations in Lung Cancer Patients That May Help Predict an Individual’s Treatment Response

Researchers at the Moffitt Cancer Center have identified four inherited genetic variants in non-small cell lung cancer patients that can help predict survival and treatment response. Their findings could help lead to more personalized treatment options and improved outcomes for patients.

The researchers analyzed DNA sequence variations in 651 non-small cell lung cancer patients, paying close attention to 53 inflammation-related genes. They found that four of the top 15 variants associated with survival were located on one specific gene (TNFRSF10B). In the study, these variants increased the risk of death as much as 41 percent. The researchers also found that patients with these gene variations had a greater risk of death if their treatment plans included surgery without chemotherapy compared to patients who were treated with chemotherapy following surgery.

“There are few validated biomarkers that can predict survival or treatment response for patients with non-small cell lung cancer,” said study lead author Matthew B. Schabath, Ph.D., assistant member of the Cancer Epidemiology Program at Moffitt. “Having a validated genetic biomarker based on inherited differences in our genes may allow physicians to determine the best treatments for an individual patient based on their unique genetics.”

Lung cancer is the leading cause of cancer-related deaths in the United States for both men and women. Additionally, non-small cell lung cancer represents more than 80 percent of lung cancer diagnoses.

“Non-small cell lung cancer has an extremely poor five-year survival rate. Only about 16 percent of all patients survive for five years and tragically, only about four percent of patients with late stage disease live longer than five years,” explained Schabath. “Part of the difficulty in treating lung cancer is the genetic diversity of patients and their tumors. Using a personalized medicine approach to match the best treatment option to a patient based on his or her genetics will lead to better outcomes.”

The researchers noted that there has been no published data examining the association of these four specific variants on cancer risk or outcome, although studies have reported associations with other gene variants in the same gene family as TNFRSF10B.

The study can be found in the July issue of Carcinogenesis.

The work was supported by funding from the State of Florida through the James & Esther King Biomedical Research Program (09KN-15), a National Institutes of Health SPORE grant (P50 CA119997), an American Cancer Society grant (93-032-13), and a grant from the National Cancer Institute (5 UC2 CA 148322-02).

About Moffitt Cancer Center
Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s excellence in research, its contributions to clinical trials, prevention and cancer control. Since 1999, Moffitt has been listed in U.S. News & World Report as one of “America’s Best Hospitals” for cancer. With more than 4,200 employees, Moffitt has an economic impact on the state of nearly $2 billion. For more information, visit MOFFITT.org, and follow the Moffitt momentum on Facebook, twitter and YouTube.

Media release by Florida Science Communications

Kim Polacek | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>