Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moffitt researchers identify gene variations that may help predict cancer treatment response

09.08.2013
Moffitt Cancer Center Researchers Identify Gene Variations in Lung Cancer Patients That May Help Predict an Individual’s Treatment Response

Researchers at the Moffitt Cancer Center have identified four inherited genetic variants in non-small cell lung cancer patients that can help predict survival and treatment response. Their findings could help lead to more personalized treatment options and improved outcomes for patients.

The researchers analyzed DNA sequence variations in 651 non-small cell lung cancer patients, paying close attention to 53 inflammation-related genes. They found that four of the top 15 variants associated with survival were located on one specific gene (TNFRSF10B). In the study, these variants increased the risk of death as much as 41 percent. The researchers also found that patients with these gene variations had a greater risk of death if their treatment plans included surgery without chemotherapy compared to patients who were treated with chemotherapy following surgery.

“There are few validated biomarkers that can predict survival or treatment response for patients with non-small cell lung cancer,” said study lead author Matthew B. Schabath, Ph.D., assistant member of the Cancer Epidemiology Program at Moffitt. “Having a validated genetic biomarker based on inherited differences in our genes may allow physicians to determine the best treatments for an individual patient based on their unique genetics.”

Lung cancer is the leading cause of cancer-related deaths in the United States for both men and women. Additionally, non-small cell lung cancer represents more than 80 percent of lung cancer diagnoses.

“Non-small cell lung cancer has an extremely poor five-year survival rate. Only about 16 percent of all patients survive for five years and tragically, only about four percent of patients with late stage disease live longer than five years,” explained Schabath. “Part of the difficulty in treating lung cancer is the genetic diversity of patients and their tumors. Using a personalized medicine approach to match the best treatment option to a patient based on his or her genetics will lead to better outcomes.”

The researchers noted that there has been no published data examining the association of these four specific variants on cancer risk or outcome, although studies have reported associations with other gene variants in the same gene family as TNFRSF10B.

The study can be found in the July issue of Carcinogenesis.

The work was supported by funding from the State of Florida through the James & Esther King Biomedical Research Program (09KN-15), a National Institutes of Health SPORE grant (P50 CA119997), an American Cancer Society grant (93-032-13), and a grant from the National Cancer Institute (5 UC2 CA 148322-02).

About Moffitt Cancer Center
Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s excellence in research, its contributions to clinical trials, prevention and cancer control. Since 1999, Moffitt has been listed in U.S. News & World Report as one of “America’s Best Hospitals” for cancer. With more than 4,200 employees, Moffitt has an economic impact on the state of nearly $2 billion. For more information, visit MOFFITT.org, and follow the Moffitt momentum on Facebook, twitter and YouTube.

Media release by Florida Science Communications

Kim Polacek | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Life Sciences:

nachricht Scientists call for improved technologies to save imperiled California salmon
14.12.2017 | NOAA Fisheries West Coast Region

nachricht Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients
14.12.2017 | Luxembourg Institute of Health

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Protein Structure Could Unlock New Treatments for Cystic Fibrosis

14.12.2017 | Life Sciences

Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients

14.12.2017 | Life Sciences

ASU scientists develop new, rapid pipeline for antimicrobials

14.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>