Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT biologists find that restoring the gene for cancer protein p53 slows spread of advanced tumors

25.11.2010
In a new study to be published in the Nov. 25 issue of Nature, MIT cancer biologists show that restoring the protein p53's function in mice with lung cancer has no effect early in tumor development, but restoring the function later on could prevent more advanced tumors from spreading throughout the body.

Cancer researchers have known since the 1980s that p53 plays a critical role in protecting cells from becoming cancerous. P53 is defective in about half of all human cancers; when it functions correctly, it appears to suppress tumor formation by preventing cells with cancer-promoting mutations from reproducing.

Knowing p53's critical role in controlling cancer, researchers have been trying to develop drugs that restore the protein's function, in hopes of reestablishing the ability to suppress tumor growth. One such drug is now in clinical trials.

The findings of this new study suggest that drugs that restore p53 function could help prevent aggressive lung cancers from metastasizing, though they might spare benign tumor cells that could later turn aggressive. "Even if you clear the malignant cells, you're still left with benign cells harboring the p53 mutation," says David Feldser, lead author of the paper and a postdoctoral fellow at the David H. Koch Institute for Integrative Cancer Research at MIT.

However, such drugs are still worth pursuing because they could prolong the life of the patient, says Feldser, who works in the lab of Koch Institute Director Tyler Jacks, senior author of the paper. The research was funded by the Howard Hughes Medical Institute.

P53 is known to control the cell cycle, which regulates cell division. In particular, the protein stops a cell from dividing when its DNA is damaged. P53 then activates DNA repair systems, and if the damage proves irreparable, it instructs the cell to commit suicide.

Without p53, cells can continue dividing even after acquiring hazardous mutations. Eventually, after a cell accumulates enough mutations, it becomes cancerous. Cancer biologists believe that sustained inactivation of p53 and other tumor suppressors is necessary for cancers to become advanced.

In the new Nature study, the MIT researchers studied mice that are genetically engineered to develop lung tumors shortly after birth. Those mice also have an inactive form of the p53 gene, but the gene includes a genetic "switch" that allows the researchers to turn it back on after tumors develop.

At first, the researchers turned on p53 in mice that were four weeks old and had developed tumors known as adenomas, which are benign. To their surprise, restoring p53 had no effect on the tumors.

Next they turned on p53 in another group of tumor-prone mice, but they waited until the mice were 10 weeks old. At this point, their tumors had progressed to adenocarcinomas, a malignant type of cancer. In these mice, turning on p53 cleared the malignant cells, but left behind cells that had not become malignant.

This suggests that the p53 signaling pathway is recruited only when there is a lot of activity from other cancer genes. In benign tumors, there is not enough activity to engage the p53 system, so restoring it has no effect on those tumors. In the malignant tumor cells, reactivated p53 eliminates cells with too much activity in a signaling pathway involving mitogen-activated protein kinase (MAPK), which is often overactive in cancer cells, leading to uncontrolled growth.

The MIT researchers are now looking for drugs that reactivate mutant forms of p53, and also plan to study whether tumors that have metastasized would be vulnerable to p53 restoration.

Source: "Stage-specific sensitivity to p53 restoration during lung cancer progression," by David M. Feldser, Kamena K. Kostova, Monte M. Winslow, Sarah E. Taylor, Chris Cashman, Charles A. Whittaker, Francisco J. Sanchez-Rivera, Rebecca Resnick, Roderick Bronson, Michael T. Hemann, and Tyler Jacks. Nature, 25 November 2010.

Funding: The Howard Hughes Medical Institute

Jen Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>