Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniature Pump - Polymer gel continuously responds to fleeting stimuli

21.08.2013
Miniaturization is constantly on the march. For example, we now have entire analytical and diagnostic systems that can take place on a chip.

These systems require miniaturized versions of macroscopic components and devices. In the journal Angewandte Chemie, American researchers have now introduced a microscopic pump. It is based on polymer gel microparticles and starts up when irradiated with UV light. The extraordinary thing about this device is that the material continues to pump when the stimulus is removed.



The tiny pumps developed by a team led by Ayusman Sen and Scott T. Phillips at Pennsylvania State University are based on polymer gel spheres with a diameter of 300 µm. Their surface is equipped with two different types of molecules. The first type is split off under UV light, breaking down into CO2, protons, fluoride ions, and a small organic molecule.

The trick is that the fluoride ions cause the second type of molecule to split off of the surfaces of the spheres – even when no UV light is present. The second type of molecule also breaks down into CO2, protons, fluoride ions and a small organic molecule. Because fluoride is constantly being released, the reaction only comes to a halt when all of the type 2 molecules are used up.

How do the spheres “pump”? The molecules and ions they release diffuse away from the surfaces of the spheres and form a concentration gradient. Concentration gradients always produce flow within a liquid: the spheres “suck” the liquid toward themselves. The organic molecule released in the reaction also causes the spheres to change color from white to yellow-orange. This indicates that the micropump is “switched on”.

“Intelligent” polymer materials that can “respond” to an external stimulus with a macroscopic function are the subjects of intensive research. The fact that this material “remembers” the initiating stimulus – the UV light – and continues to pump when it is switched off is something completely new for this type of material. The new material requires no reagents or “fuels” to be added through the liquid. It functions autonomously, converting chemical energy into a mechanical response, the flow of liquid. Molecule 1 receives the signal; the fluoride ions transmit it. This is the first time that all these properties have been combined in an “intelligent” polymeric material.

It should also be possible to devise a similar material that reacts to stimuli other than light, such as the presence of a certain substance. Such microscopic pumps could be used to redirect the flow in a microfluidic system as soon as this specific substance appears.

About the Author
Dr. Scott Phillips is the Martarano Assistant Professor in the Department of Chemistry at Penn State. His areas of interest include developing new strategies for signal amplification, as well as new stimuli-responsive materials and point-of-care diagnostics.
Author: Scott T. Phillips, Pennsylvania State University, University Park (USA), http://www.psu.edu/dept/phillipsgroup/scott.html
Title: A Self-Powered Polymeric Material that Responds Autonomously and Continuously to Fleeting Stimuli

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201304333

Angewandte Chemie | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>