Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mildew-resistant and infertile

25.11.2010
Two proteins involved in powdery mildew infection in plants also play an important role in fertilisation

Mildew infections not only cause unsightly vegetable patches, they can also result in extensive crop failure. Interestingly, the processes involved in infections with this garden pest are similar to those involved in fertilisation. Scientists from the Max Planck Institute for Plant Breeding Research in Cologne and the University of Zurich have identified two proteins in the model plant species Arabidopsis thaliana that are necessary for both fertilisation and infection with powdery mildew. This explains why mildew-resistant plants, in which these genes are mutated, are infertile. (Science, Vol 330, p 968-971)


Thale cress (Arabidopsis thaliana) plants with powdery mildew infection. The white coating on the infected leaves, which originates from the mycelium on the leaf surface, is a typical feature of mildew infection. Image: Ralph Panstruga

Pollen tubes and hyphae, the filamentous structures of which fungi are formed, not only look very similar, they also require similar proteins. The two proteins in question, which have just been discovered, are named after the Etruscan fertility goddesses Feronia and Nortia. The scientists discovered that these proteins are both beneficial and harmful to plants. They link the capacity for seed formation with the absence of resistance to mildew infection.

Feronia signals to the pollen tube, which germinates from the pollen, that it has reached its destination and that it is time to release the male gametes. The protein is also formed in the leaves, however, and provides mildew with access to the plant. For the latter to become resistant to the intruder, both the maternal and paternal copies of the feronia gene must be defective. If the plant lacks the feronia protein, however, the pollen tube does not stop growing at the entrance to the embryo sac but continues to penetrate into the female part of the flower and does not trigger the release of sperm cells. As a result, fertilisation does not take place and an embryo does not develop.

The protein Nortia is also involved in fertilisation; however, it does not occur in the leaves. A protein known as MLO, which is closely related to Nortia, is found there instead. MLO makes plants, e.g. barley, in which Ralph Panstruga discovered the MLO gene a few years ago, prone to mildew. However, they only become resistant if both copies of the MLO gene are mutated. Because Arabidopsis has three MLO genes that play a role in susceptibility to mildew, in this plant, six copies must become defunct before it becomes resistant to mildew. Various other genes exist, however, that also cause resistance to fungal infections in plants.

Resistant or fertile

Feronia and Nortia are formed by the helper cells of the embryo sac. They bring about the fusion of the gametes in the ovary. Feronia and MLO in the leaves enable mildew to penetrate into the plant. "This dual function indicates why evolution has not yet succeeded in blocking this point of access to mildew. It would clearly be very difficult to decouple these two functions. Therefore, the alternatives are: resistant and infertile, or vulnerable and fertile," says Ralph Panstruga from the Max Planck Institute for Plant Breeding Research.

Feronia is a receptor that apparently directly influences Nortia. However, the scientists do not yet know how Feronia cooperates with Nortia and MLO. "Our goal is to breed mildew-resistant plants based on Feronia mutants that are also fertile," says Panstruga. This is a very ambitious aim, as evolution appears not to have produced any such mutants up to now. Feronia evidently plays such an important role in the ovary and the leaves that the plant simply cannot manage without it.

Original work:

Sharon A. Kessler, Hiroko Shimosato-Asano, Nana F. Keinath, Samuel E. Wuest, Gwyneth Ingram, Ralph Panstruga and Ueli Grossniklaus
Conserved Molecular Components for Pollen Tube Reception and Fungal Invasion
Science, 12 November 2010, 330: 968-971
Contact:
Dr Ralph Panstruga
Max Planck Institute for Plant Breeding Research, Köln
Tel.: +49-221-5062-316
E-mail: panstrug@mpiz-koeln.mpg.de

Barbara Abrell | EurekAlert!
Further information:
http://www.mpg.de/english/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>