Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mildew-resistant and infertile

25.11.2010
Two proteins involved in powdery mildew infection in plants also play an important role in fertilisation

Mildew infections not only cause unsightly vegetable patches, they can also result in extensive crop failure. Interestingly, the processes involved in infections with this garden pest are similar to those involved in fertilisation. Scientists from the Max Planck Institute for Plant Breeding Research in Cologne and the University of Zurich have identified two proteins in the model plant species Arabidopsis thaliana that are necessary for both fertilisation and infection with powdery mildew. This explains why mildew-resistant plants, in which these genes are mutated, are infertile. (Science, Vol 330, p 968-971)


Thale cress (Arabidopsis thaliana) plants with powdery mildew infection. The white coating on the infected leaves, which originates from the mycelium on the leaf surface, is a typical feature of mildew infection. Image: Ralph Panstruga

Pollen tubes and hyphae, the filamentous structures of which fungi are formed, not only look very similar, they also require similar proteins. The two proteins in question, which have just been discovered, are named after the Etruscan fertility goddesses Feronia and Nortia. The scientists discovered that these proteins are both beneficial and harmful to plants. They link the capacity for seed formation with the absence of resistance to mildew infection.

Feronia signals to the pollen tube, which germinates from the pollen, that it has reached its destination and that it is time to release the male gametes. The protein is also formed in the leaves, however, and provides mildew with access to the plant. For the latter to become resistant to the intruder, both the maternal and paternal copies of the feronia gene must be defective. If the plant lacks the feronia protein, however, the pollen tube does not stop growing at the entrance to the embryo sac but continues to penetrate into the female part of the flower and does not trigger the release of sperm cells. As a result, fertilisation does not take place and an embryo does not develop.

The protein Nortia is also involved in fertilisation; however, it does not occur in the leaves. A protein known as MLO, which is closely related to Nortia, is found there instead. MLO makes plants, e.g. barley, in which Ralph Panstruga discovered the MLO gene a few years ago, prone to mildew. However, they only become resistant if both copies of the MLO gene are mutated. Because Arabidopsis has three MLO genes that play a role in susceptibility to mildew, in this plant, six copies must become defunct before it becomes resistant to mildew. Various other genes exist, however, that also cause resistance to fungal infections in plants.

Resistant or fertile

Feronia and Nortia are formed by the helper cells of the embryo sac. They bring about the fusion of the gametes in the ovary. Feronia and MLO in the leaves enable mildew to penetrate into the plant. "This dual function indicates why evolution has not yet succeeded in blocking this point of access to mildew. It would clearly be very difficult to decouple these two functions. Therefore, the alternatives are: resistant and infertile, or vulnerable and fertile," says Ralph Panstruga from the Max Planck Institute for Plant Breeding Research.

Feronia is a receptor that apparently directly influences Nortia. However, the scientists do not yet know how Feronia cooperates with Nortia and MLO. "Our goal is to breed mildew-resistant plants based on Feronia mutants that are also fertile," says Panstruga. This is a very ambitious aim, as evolution appears not to have produced any such mutants up to now. Feronia evidently plays such an important role in the ovary and the leaves that the plant simply cannot manage without it.

Original work:

Sharon A. Kessler, Hiroko Shimosato-Asano, Nana F. Keinath, Samuel E. Wuest, Gwyneth Ingram, Ralph Panstruga and Ueli Grossniklaus
Conserved Molecular Components for Pollen Tube Reception and Fungal Invasion
Science, 12 November 2010, 330: 968-971
Contact:
Dr Ralph Panstruga
Max Planck Institute for Plant Breeding Research, Köln
Tel.: +49-221-5062-316
E-mail: panstrug@mpiz-koeln.mpg.de

Barbara Abrell | EurekAlert!
Further information:
http://www.mpg.de/english/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>