Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microspiders

02.09.2011
Polymerization reaction drives micromotors

Though it seems like science fiction, microscopic “factories” in which nanomachines produce tiny structures for miniaturized components or nanorobots that destroy tumor cells within the body and scrape blockages from our arteries may become reality in the foreseeable future. Nanomotors could transport drugs to specific target organs more rapidly or pilot analytes through the tiny channels on microchip diagnostic systems.


In the journal Angewandte Chemie, Ayusman Sen and his team from Pennsylvania State University (USA) describe a new type of micromotor that is powered by a polymerization reaction and deposits tiny threads along its trail like a microspider.

The motors consist of spheres that are barely a micrometer in size, made half of gold, half of silicon dioxide. Certain catalyst molecules (a Grubbs catalyst) that catalyze polymerizations can be attached to the silicon dioxide surface. Sen and his team use norbornene as a monomer. The catalyst opens the rings and strings these monomers together into long chain molecules.

As soon as the reaction begins, the spheres start driving through the surrounding liquid. How is it that such a reaction can cause movement? The secret lies in the two different halves of the spheres. The monomer is only consumed on the side where the catalyst molecules are present. This causes the monomer concentration to decrease until it is lower than on the catalyst-free gold side. The resulting concentration gradient produces osmotic pressure, which causes a tiny current of solvent molecules toward areas with higher monomer concentration—toward the gold side. This miniature current drives the micromotor in the opposite direction.

Somatic cells—in processes such as embryogenesis—and certain single-celled organisms can follow concentration gradients of messenger substances or nutrients, a phenomenon known as chemotaxis. The new micromotors are also capable of such directed movement. The scientists used norbornene-filled gels that slowly leach out the monomer. The micromotors sense this and preferentially move towards the gel, following the nutrient gradient like a single-celled organism. The reason for this is that the polymerization goes faster when there is more monomer near the catalyst. This effect causes the local current driving the spheres to become stronger as well.

It is thus possible to direct the micromotors toward their target. In a solvent where the resulting polymer is insoluble, it could be deposited in the trail left behind; a microspider that moves around weaving a web. The micromotors can also be used to detect defects and fractures, moving towards them and sealing them with polymer.

Author: Ayusman Sen, Pennsylvania State University, University Park (USA), http://research.chem.psu.edu/axsgroup/dr_sen.html
Title: A Polymerization-Powered Motor
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201103565

Ayusman Sen | Angewandte Chemie
Further information:
http://research.chem.psu.edu/axsgroup/dr_sen.html
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>