Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanical Stress Can Help or Hinder Wound Healing Depending on Time of Application

25.10.2011
A new study demonstrates that mechanical forces affect the growth and remodeling of blood vessels during tissue regeneration and wound healing. The forces diminish or enhance the vascularization process and tissue regeneration depending on when they are applied during the healing process.

The study found that applying mechanical forces to an injury site immediately after healing began disrupted vascular growth into the site and prevented bone healing. However, applying mechanical forces later in the healing process enhanced functional bone regeneration. The study’s findings could influence treatment of tissue injuries and recommendations for rehabilitation.

“Our finding that mechanical stresses caused by movement can disrupt the initial formation and growth of new blood vessels supports the advice doctors have been giving their patients for years to limit activity early in the healing process,” Robert Guldberg, a professor in the George W. Woodruff School of Mechanical Engineering at the Georgia Institute of Technology. “However, our findings also suggest applying mechanical stresses to the wound later on can significantly improve healing through a process called adaptive remodeling.”

The study was published last month in the journal Proceedings of the National Academy of Sciences. The research was supported by the National Institutes of Health, the Armed Forces Institute of Regenerative Medicine and the U.S. Department of Defense.

Because blood vessel growth is required for the regeneration of many different tissues, including bone, Guldberg and former Georgia Tech graduate student Joel Boerckel used healing of a bone defect in rats for their study. Following removal of eight millimeters of femur bone, they treated the gap with a polymer scaffold seeded with a growth factor called recombinant human bone morphogenetic protein-2 (rhBMP-2), a potent inducer of bone regeneration. The scaffold was designed in collaboration with Nathaniel Huebsch and David Mooney from Harvard University.

In one group of animals, plates screwed onto the bones to maintain limb stability prevented mechanical forces from being applied to the affected bone. In another group, plates allowed compressive loads along the bone axis to be transferred, but prevented twisting and bending of the limbs. The researchers used contrast-enhanced micro-computed tomography imaging and histology to quantify new bone and blood vessel formation.

The experiments showed that exerting mechanical forces on the injury site immediately after healing began significantly inhibited vascular growth into the bone defect region. The volume of blood vessels and their connectivity were reduced by 66 and 91 percent, respectively, compared to the group for which no force was applied. The lack of vascular growth into the defect produced a 75 percent reduction in bone formation and failure to heal the defect.

But the study found that the same mechanical force that hindered repair early in the healing process became helpful later on.

When the injury site experienced no mechanical force until four weeks after the injury, blood vessels grew into the defect and vascular remodeling began. With delayed loading, the researchers observed a reduction in quantity and connectivity of blood vessels, but the average vessel thickness increased. In addition, bone formation improved by 20 percent compared to when no force was applied, and strong tissue biomaterial integration was evident.

“We found that having a very stable environment initially is very important because mechanical stresses applied early on disrupted very small vessels that were forming,” said Guldberg, who is also the director of the Petit Institute for Bioengineering and Bioscience at Georgia Tech. “If you wait until those vessels have grown in and they’re a little more mature, applying a mechanical stimulus then induces remodeling so that you end up with a more robust vascular network.”

The study’s results may help researchers optimize the mechanical properties of tissue regeneration scaffolds in the future.

“Our study shows that one might want to implant a material that is stiff at the very beginning to stabilize the injury site but becomes more compliant with time, to improve vascularization and tissue regeneration,” added Guldberg.

Georgia Tech mechanical engineering graduate student Brent Uhrig and postdoctoral fellow Nick Willett also contributed to this research.

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA
Media Relations Contacts: Abby Robinson (abby@innovate.gatech.edu; 404-385-3364) or John Toon (jtoon@gatech.edu; 404-894-6986)

Writer: Abby Robinson

Abby Robinson | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>