Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What makes a plant a plant?

16.06.2011
Although scientists have been able to sequence the genomes of many organisms, they still lack a context for associating the proteins encoded in genes with specific biological processes.

To better understand the genetics underlying plant physiology and ecology—especially in regard to photosynthesis—a team of researchers including Carnegie's Arthur Grossman identified a list of proteins encoded in the genomes of plants and green algae, but not in the genomes of organisms that don't generate energy through photosynthesis. Their work will be published June 17 in the Journal of Biological Chemistry.

Using advanced computational tools to analyze the genomes of 28 different plants and photosynthetic organisms, Grossman and his colleagues at the University of California in Los Angeles and the Joint Genome Institute of the Department of Energy were able to identify 597 proteins encoded on plant and green algal genomes, but that are not present in non-photosynthetic organisms. They call this suite of proteins the GreenCut.

Interestingly, of the 597 GreenCut proteins, 286 have known functions, while the remaining 311 have not been associated with a specific biological process and are called "unknowns."

The majority of the GreenCut proteins, 52 percent, have been localized in a cellular organelle called the chloroplast--the compartment where photosynthesis takes place. It is widely accepted that chloroplasts originated from photosynthetic, single-celled bacteria called cyanobacteria, which were engulfed by a more complex, non-photosynthetic cell more than 1.5 billion years ago. While the relationship between the two organisms was originally symbiotic, over evolutionary time the cyanobacterium transferred most of its genetic information to the nucleus of the host organism, losing its ability to live independent of its partner.

"This genetically-reduced cyanobacterium, which is now termed a chloroplast, has maintained its ability to perform photosynthesis and certain other essential metabolic functions, such as the synthesis of amino acids and fats. The processes that take place in the chloroplast must also be tightly integrated with metabolic processes that occur in other parts the cell outside of the chloroplast," Grossman explained.

While recent evidence suggests that many of the unknowns of the GreenCut are associated with photosynthetic function, not all GreenCut proteins are located in the chloroplast. But since they are unique to photosynthetic organisms and highly conserved throughout plants and other photosynthetic organisms, it is likely that they are critical for other plant-specific processes. Possible functions could be associated with regulation of metabolism, control of DNA transcription, and the functioning of other cellular organelles, including the energy producing mitochondria and the house-cleaning peroxisomes.

Expanding this work, Grossman and his colleagues found that many GreenCut proteins have been maintained in ancient cyanobacteria, red algae, and other single-celled algae called diatoms. Comparison of GreenCut proteins among various organisms is opening windows for discoveries about the roles that these proteins play in photosynthetic cells, the evolution of chloroplasts, and how photosynthetic cells might be tailored for survival under different environmental conditions.

The work conducted by the U.S. Department of Energy Joint Genome Institute (S.E.P.) is supported by the Office of Science of the U.S. Department of Energy. Individual scientists were supported in part by a Ruth L. Kirschstein National Research Service Award from the NIH, a departmental Majeti-Alapati Fellowship, the National Science Foundation, and the Department of Energy.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Arthur Grossman | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>