Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major ALS breakthrough

22.08.2011
Researchers discover common cause of all forms of ALS

The underlying disease process of amyotrophic lateral sclerosis (ALS and Lou Gehrig's disease), a fatal neurodegenerative disease that paralyzes its victims, has long eluded scientists and prevented development of effective therapies. Scientists weren't even sure all its forms actually converged into a common disease process.

But a new Northwestern Medicine study for the first time has identified a common cause of all forms of ALS.

The basis of the disorder is a broken down protein recycling system in the neurons of the spinal cord and the brain. Optimal functioning of the neurons relies on efficient recycling of the protein building blocks in the cells. In ALS, that recycling system is broken. The cell can't repair or maintain itself and becomes severely damaged.

The discovery by Northwestern University Feinberg School of Medicine researchers, published in the journal Nature, provides a common target for drug therapy and shows that all types of ALS are, indeed, tributaries, pouring into a common river of cellular incompetence.

"This opens up a whole new field for finding an effective treatment for ALS," said senior author Teepu Siddique, M.D., the Les Turner ALS Foundation/Herbert C. Wenske Professor of the Davee Department of Neurology and Clinical Neurosciences at Northwestern's Feinberg School and a neurologist at Northwestern Memorial Hospital. "We can now test for drugs that would regulate this protein pathway or optimize it, so it functions as it should in a normal state."

The discovery of the breakdown in protein recycling may also have a wider role in other neurodegenerative diseases, specifically the dementias. These include Alzheimer's disease and frontotemporal dementia as well as Parkinson's disease, all of which are characterized by aggregations of proteins, Siddique said. The removal of damaged or misfolded proteins is critical for optimal cell functioning, he noted.

This breakdown occurs in all three forms of ALS: hereditary, which is called familial; ALS that is not hereditary, called sporadic; and ALS that targets the brain, ALS/dementia.

In related research, Feinberg School researchers also discovered a new gene mutation present in familial ALS and ALS/dementia, linking these two forms of the disease.

Siddique has been searching for the causes and underlying mechanism of ALS for more than a quarter century. He said he was initially drawn to it because, "It was one of the most difficult problems in neurology and the most devastating, a disease without any treatment or known cause."

Siddique's efforts first showed in 1989 that molecular genetics techniques were applicable to ALS, then described the first ALS gene locus in 1991, which led to the discovery of SOD1 and engineering of the first genetic animal model for ALS.

ALS affects an estimated 350,000 people worldwide, including children and adults, with about 50 percent of people dying within three years of its onset. In the motor disease, people progressively lose muscle strength until they become paralyzed and can no longer move, speak, swallow and breathe. ALS/dementia targets the frontal and temporal lobes of the brain, affecting patients' judgment, the ability to understand language and to perform basic tasks like planning what to wear or organizing their day.

"These people in the prime of their lives and the peak of their productivity get this devastating illness that kills them," Siddique said. "The people who get ALS/dementia, an even more vicious disease, have a double whammy."

BROKEN DOWN RECYCLING SYSTEM

Feinberg School scientists found the cause of ALS by discovering a protein, ubiquilin2, whose critical job is to recycle damaged or misfolded proteins in motor and cortical neurons and shuttle them off to be reprocessed.

In people with ALS, Feinberg researchers found ubiquilin2 isn't doing its job. As a result, the damaged proteins and ubiquilin2 loiter and accumulate in the motor neurons in the spinal cord and cortical and hippocampal neurons in the brain. The protein accumulations resemble twisted skeins of yarn -- characteristic of ALS -- and cause the degeneration of the neurons.

Researchers found ubiquilin2 in these skein-like accumulations in the spinal cords of ALS cases and in the brains of ALS/dementia cases.

The scientists also discovered mutations in ubiquilin2 in patients with familial ALS and familial ALS/dementia. But the skein-like accumulations were present in people's brains and spinal cords in all forms of ALS and ALS/dementia, whether or not they had the gene mutation.

"This study provides robust evidence showing a defect in the protein degradation pathway causes neurodegenerative disease," said Han-Xiang Deng, M.D., lead author of the paper and associate professor of neurology at the Feinberg School. "Abnormality in protein degradation has been suspected, but there was little direct evidence before this study." The other lead author is Wenjie Chen, senior research technologist in neurology.

About 90 percent of ALS is sporadic, without any known cause, until this study. The remaining 10 percent is familial. To date, mutations in about 10 genes, several of which were discovered at Northwestern, including SOD1 and ALSIN, account for about 30 percent of classic familial ALS, noted Faisal Fecto, M.D., study co-author and a graduate student in neuroscience at Feinberg.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>