Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maintaining independence

31.01.2011
A set of neighboring immune-system genes each receive separate activation instructions despite being controlled by a common factor

As part of the immune response to foreign antigens, naïve T cells mature into different types of helper T cells. TH1 cells and TH17 cells, for example, secrete a subset of signaling factors known as cytokines that promote inflammatory responses to viral infections, while TH2 cells secrete cytokines that promote antibody secretion by B cells and drive allergic reactions.

The GATA-3 protein is known as a ‘master switch’ for TH2 differentiation, stimulating production of cytokines such as interleukin (IL)-4 and IL-13, but new findings from a team led by Masato Kubo at the RIKEN Center for Allergy and Immunology in Yokohama have revealed an unexpected degree of complexity in this activation process[1].

“The idea that genes encoding TH2 cytokines are coordinately regulated … has been widely accepted,” says Kubo. Many of these genes are situated in the same chromosomal neighborhood, and some scientists believe that the chromosome physically loops so that DNA-bound GATA can regulate multiple sites simultaneously. However, Kubo and colleagues found that GATA appears to independently bind multiple, distinct sites that each confer regulatory control over individual TH2-associated genes.

One of these sites, HS2, specifically governs IL-4 expression, and GATA binding at this site induces chemical modification of the DNA segment containing the Il4 gene, leading to increased cytokine production. Naïve T cells from mice lacking this chromosomal region give rise to TH2 cells that generate normal levels of most cytokines, but fail to produce IL-4; these animals also show fundamental defects in their allergic response.

In parallel, the researchers identified a second GATA-binding site, CGRE, which specifically regulates production of IL-13. Like HS2, GATA interaction with this site is associated with targeted chemical modification of a nearby stretch of DNA containing the Il13 gene, and disruption of CGRE essentially eliminates production of this cytokine while leaving IL-4 production unaffected (Fig. 1). “These results came as a surprise,” says Kubo. “They indicate that the independent recruitment of GATA-3 to locus-specific regulatory elements controls the expression status of individual genes encoding TH2 cytokines.” These findings also parallel previous data suggesting that GATA coordinates expression of IL-5, another TH2 cytokine, independently of IL-13.

Other types of immune cells also secrete TH2 cytokines, and Kubo and colleagues now hope to determine whether their findings represent a broadly used mechanism for regulating production of these cytokines. “Our next priority will be exploring the relative contribution of these discrete elements to transcriptional regulation of IL-4 and IL-13 among these cell types,” he says.

The corresponding author for this highlight is based at the Laboratory for Signal Network, RIKEN Research Center for Allergy and Immunology

Journal information

[1] Tanaka, S., Motomura, Y., Suzuki, Y., Yagi, R., Inoue, H., Miyatake, S. & Kubo, M. The enhancer HS2 critically regulates GATA-3-mediated Il4 transcription in TH2 cells. Nature Immunology 12, 77–85 (2011).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6514
http://www.researchsea.com

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>