Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Maintaining independence

A set of neighboring immune-system genes each receive separate activation instructions despite being controlled by a common factor

As part of the immune response to foreign antigens, naïve T cells mature into different types of helper T cells. TH1 cells and TH17 cells, for example, secrete a subset of signaling factors known as cytokines that promote inflammatory responses to viral infections, while TH2 cells secrete cytokines that promote antibody secretion by B cells and drive allergic reactions.

The GATA-3 protein is known as a ‘master switch’ for TH2 differentiation, stimulating production of cytokines such as interleukin (IL)-4 and IL-13, but new findings from a team led by Masato Kubo at the RIKEN Center for Allergy and Immunology in Yokohama have revealed an unexpected degree of complexity in this activation process[1].

“The idea that genes encoding TH2 cytokines are coordinately regulated … has been widely accepted,” says Kubo. Many of these genes are situated in the same chromosomal neighborhood, and some scientists believe that the chromosome physically loops so that DNA-bound GATA can regulate multiple sites simultaneously. However, Kubo and colleagues found that GATA appears to independently bind multiple, distinct sites that each confer regulatory control over individual TH2-associated genes.

One of these sites, HS2, specifically governs IL-4 expression, and GATA binding at this site induces chemical modification of the DNA segment containing the Il4 gene, leading to increased cytokine production. Naïve T cells from mice lacking this chromosomal region give rise to TH2 cells that generate normal levels of most cytokines, but fail to produce IL-4; these animals also show fundamental defects in their allergic response.

In parallel, the researchers identified a second GATA-binding site, CGRE, which specifically regulates production of IL-13. Like HS2, GATA interaction with this site is associated with targeted chemical modification of a nearby stretch of DNA containing the Il13 gene, and disruption of CGRE essentially eliminates production of this cytokine while leaving IL-4 production unaffected (Fig. 1). “These results came as a surprise,” says Kubo. “They indicate that the independent recruitment of GATA-3 to locus-specific regulatory elements controls the expression status of individual genes encoding TH2 cytokines.” These findings also parallel previous data suggesting that GATA coordinates expression of IL-5, another TH2 cytokine, independently of IL-13.

Other types of immune cells also secrete TH2 cytokines, and Kubo and colleagues now hope to determine whether their findings represent a broadly used mechanism for regulating production of these cytokines. “Our next priority will be exploring the relative contribution of these discrete elements to transcriptional regulation of IL-4 and IL-13 among these cell types,” he says.

The corresponding author for this highlight is based at the Laboratory for Signal Network, RIKEN Research Center for Allergy and Immunology

Journal information

[1] Tanaka, S., Motomura, Y., Suzuki, Y., Yagi, R., Inoue, H., Miyatake, S. & Kubo, M. The enhancer HS2 critically regulates GATA-3-mediated Il4 transcription in TH2 cells. Nature Immunology 12, 77–85 (2011).

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>