Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSU Researchers Discover How Microbes Survive in Freezing Conditions

11.10.2013
Most microbial researchers grow their cells in petri-dishes to study how they respond to stress and damaging conditions.

But, with the support of funding from NASA, researchers in LSU’s Department of Biological Sciences tried something almost unheard of: studying microbial survival in ice to understand how microorganisms could survive in ancient permafrost, or perhaps even buried in ice on Mars.

Brent Christner, associate professor of biological sciences, and colleagues at LSU including postdoctoral researcher Markus Dieser and Mary Lou Applewhite Professor John Battista, recently had results on DNA repair in ice-entrapped microbes accepted in the journal of Applied and Environmental Microbiology.

To understand how microbes survive in frozen conditions, Christner and colleagues focused on analysis of DNA, the hereditary molecule that encodes the genetic instructions used in the development and function of all organisms.

“Microbes are made up of macromolecules that, even if frozen, are subject to decay,” Christner said. “We know of a range of spontaneous reactions that result in damage to DNA.”

The worst kind of damage is known as a double-stranded break, where the microbe’s DNA is cleaved into two separate pieces that need to be put back together to make the chromosome functional.

“This kind of damage is inevitable if cells exist frozen in permafrost for thousands of years and cannot make repairs,” Christner said. “Imagine that a microbe is in ice for extended periods of time and its DNA is progressively getting cut into pieces. There will eventually be a point when the microbe’s DNA becomes so damaged that it’s no longer a viable informational storage molecule. What is left is a corpse.”

The situation would seem dire for the longevity of microbes in ice. But curiously, researchers have been able to revive microbes buried in ice and permafrost for hundreds of thousands to millions of years. In fact, Christner managed to revive several different types of bacteria from near the bottom of the Guliya ice cap on the Qinghan-Tibetan plateau in Western China – ice that is 750,000 years old, from long before the age of humans.

But how is it possible for microbes to counter expectations and survive for such long periods when frozen? The survival of microorganisms in ancient glacial ice and permafrost has typically been ascribed to their ability to persist in a dormant, metabolically inert state. But even this explanation does not account for the background levels of ionizing radiation that cause damage to these microbes’ DNA, frozen at the bottom of a glacier or not.

“In order to survive that long, different studies for instance point towards dormancy, or ‘slow motion metabolism,’ but regardless of the physiological state, without active DNA repair an organism will accumulate DNA damage to an extent that will lead to cell death,” Dieser said.

Results from Christner and colleagues’ recent paper point to another explanation: mechanisms that repair DNA can operate even under freezing conditions. In laboratory experiments, Christner and colleagues took frozen suspensions of bacteria native to Siberian permafrost and exposed them to a dose of DNA-damaging ionizing radiation equivalent to what the microbes would have experienced during ~225,000 years buried in permafrost. The researchers then let the microbes incubate at low temperature (5oF) for a period of two years, periodically checking the integrity of the microbes’ DNA.

As expected, ionizing radiation damaged the circular microbial chromosome, transforming it into a slurry of smaller pieces. What surprised the researchers was that, over the course of two years in the freezer, the pieces of DNA began to come back together in their proper order.

“This isn’t a random process,” Christner said. “This tells us that the cells are repairing their DNA. This is important because we don’t typically think of these as being conditions under which complex biological processes are going on.”

Christner said that these findings make it reasonable to speculate that if life ever evolved on Mars and microbes are still frozen somewhere in the subsurface, those microbes might still be viable if given the right conditions.

“It just keeps looking better for conditions of habitability on Mars,” Christner said. “This is relevant in an astrobiological sense because if these DNA repair mechanisms operate in Earth’s cryosphere, extraterrestrial microbes might be using this survival mechanism to persist on other icy worlds in the solar system. We are very excited about these results.”

For more information on Brent Christner’s research, visit http://brent.xner.net/.

For the full research paper on DNA repair at -15oC, visit http://aem.asm.org/content/early/2013/09/23/AEM.02845-13.full.pdf+html, AEM.02845-

Ashley Berthelot | EurekAlert!
Further information:
http://www.lsu.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>