Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Long-distance Brain Waves Focus Attention

Just as our world buzzes with distractions — from phone calls to e-mails to tweets — the neurons in our brain are bombarded with messages.

Research has shown that when we pay attention, some of these neurons begin firing in unison, like a chorus rising above the noise. Now, a study in the May 29 issue of Science reveals the likely brain center that serves as the conductor of this neural chorus.

MIT neuroscientists found that neurons in the prefrontal cortex — the brain’s planning center — fire in unison and send signals to the visual cortex to do the same, generating high-frequency waves that oscillate between these distant brain regions like a vibrating spring. These waves, also known as gamma oscillations, have long been associated with cognitive states like attention, learning, and consciousness.

“We are especially interested in gamma oscillations in the prefrontal cortex because it provides top-down influences over other parts of the brain,” explains senior author Robert Desimone, director of the McGovern Institute for Brain Research and the Doris and Don Berkey Professor of Neuroscience at MIT. “We know that the prefrontal cortex is affected in people with schizophrenia, ADHD and many other brain disorders, and that gamma oscillations are also altered in these conditions. Our results suggest that altered neural synchrony in the prefrontal cortex could disrupt communication between this region and other areas of the brain, leading to altered perceptions, thoughts, and emotions.”

To explain neural synchrony, Desimone uses the analogy of a crowded party with people talking in different rooms. If individuals raise their voices at random, the noise just becomes louder. But if a group of individuals in one room chant together in unison, the next room is more likely to hear the message. And if people in the next room chant in response, the two rooms can communicate.

In the Science study, Desimone looked for patterns of neural synchrony in two ”rooms” of the brain associated with attention — the frontal eye field (FEF) within the prefrontal cortex and the V4 region of the visual cortex. Lead authors Georgia Gregoriou, a postdoctoral associate in the Desimone lab, and Stephen Gotts of the National Institute of Mental Health, trained two macaque monkeys to watch a monitor displaying multiple objects, and to concentrate on one of the objects when cued. They monitored neural activity from the FEF and the V4 regions of the brain when the monkeys were either paying attention to the object or ignoring it.

When the monkeys first paid attention to the appropriate object, neurons in both areas showed strong increases in activity. Then, as if connected by a spring, the oscillations in each area began to synchronize with one another. Desimone’s team analyzed the timing of the neural activity and found that the prefrontal cortex became engaged by attention first, followed by the visual cortex — as if the prefrontal cortex commanded the visual region to snap to attention. The delay between neural activity in these areas during each wave cycle reflected the speed at which signals travel from one region to the other — indicating that the two brain regions were talking to one another.

Desimone suspects this pattern of oscillation is not just specific to attention, but could also represent a more general mechanism for communication between different parts of the brain. These findings support speculation that gamma synchrony enables far-flung regions of the brain to rapidly communicate with each other — which has important implications for understanding and treating disorders ranging from schizophrenia to impaired vision and attention. “This helps us think about how to approach studying and treating these disorders by finding ways to restore gamma rhythms in the affected brain regions.”

Huihui Zhou, a research scientist in the Desimone lab, contributed to this study. The NIH/National Eye Institute and National Institute of Mental Health supported this research.

Elizabeth A. Thomson | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>