Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-distance Brain Waves Focus Attention

29.05.2009
Just as our world buzzes with distractions — from phone calls to e-mails to tweets — the neurons in our brain are bombarded with messages.

Research has shown that when we pay attention, some of these neurons begin firing in unison, like a chorus rising above the noise. Now, a study in the May 29 issue of Science reveals the likely brain center that serves as the conductor of this neural chorus.

MIT neuroscientists found that neurons in the prefrontal cortex — the brain’s planning center — fire in unison and send signals to the visual cortex to do the same, generating high-frequency waves that oscillate between these distant brain regions like a vibrating spring. These waves, also known as gamma oscillations, have long been associated with cognitive states like attention, learning, and consciousness.

“We are especially interested in gamma oscillations in the prefrontal cortex because it provides top-down influences over other parts of the brain,” explains senior author Robert Desimone, director of the McGovern Institute for Brain Research and the Doris and Don Berkey Professor of Neuroscience at MIT. “We know that the prefrontal cortex is affected in people with schizophrenia, ADHD and many other brain disorders, and that gamma oscillations are also altered in these conditions. Our results suggest that altered neural synchrony in the prefrontal cortex could disrupt communication between this region and other areas of the brain, leading to altered perceptions, thoughts, and emotions.”

To explain neural synchrony, Desimone uses the analogy of a crowded party with people talking in different rooms. If individuals raise their voices at random, the noise just becomes louder. But if a group of individuals in one room chant together in unison, the next room is more likely to hear the message. And if people in the next room chant in response, the two rooms can communicate.

In the Science study, Desimone looked for patterns of neural synchrony in two ”rooms” of the brain associated with attention — the frontal eye field (FEF) within the prefrontal cortex and the V4 region of the visual cortex. Lead authors Georgia Gregoriou, a postdoctoral associate in the Desimone lab, and Stephen Gotts of the National Institute of Mental Health, trained two macaque monkeys to watch a monitor displaying multiple objects, and to concentrate on one of the objects when cued. They monitored neural activity from the FEF and the V4 regions of the brain when the monkeys were either paying attention to the object or ignoring it.

When the monkeys first paid attention to the appropriate object, neurons in both areas showed strong increases in activity. Then, as if connected by a spring, the oscillations in each area began to synchronize with one another. Desimone’s team analyzed the timing of the neural activity and found that the prefrontal cortex became engaged by attention first, followed by the visual cortex — as if the prefrontal cortex commanded the visual region to snap to attention. The delay between neural activity in these areas during each wave cycle reflected the speed at which signals travel from one region to the other — indicating that the two brain regions were talking to one another.

Desimone suspects this pattern of oscillation is not just specific to attention, but could also represent a more general mechanism for communication between different parts of the brain. These findings support speculation that gamma synchrony enables far-flung regions of the brain to rapidly communicate with each other — which has important implications for understanding and treating disorders ranging from schizophrenia to impaired vision and attention. “This helps us think about how to approach studying and treating these disorders by finding ways to restore gamma rhythms in the affected brain regions.”

Huihui Zhou, a research scientist in the Desimone lab, contributed to this study. The NIH/National Eye Institute and National Institute of Mental Health supported this research.

Elizabeth A. Thomson | Newswise Science News
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>