Liver Cells, Insulin-Producing Cells, Thymus Tissue Can Be Grown in Lymph Nodes, Pitt/McGowan Team Finds

In a report recently published online in Nature Biotechnology, the research team showed for the first time that liver cells, thymus tissue and insulin-producing pancreatic islet cells, in an animal model, can thrive in lymph nodes despite being displaced from their natural sites.

Hepatitis virus infection, alcoholic cirrhosis and other diseases can cause so much damage that liver transplantation is the only way to save the patient, noted senior investigator Eric Lagasse, Pharm. D., Ph.D., associate professor, Department of Pathology, Pitt School of Medicine. Children with DiGeorge syndrome lack functional thymus glands to produce essential immune cells, and diabetes can be cured with a pancreas transplant.

“However, the scarcity of donor organs means many people will not survive the wait for transplantation,” said Dr. Lagasse, whose lab is at the McGowan Institute. “Cell therapies are being explored, but introducing cells into tissue already ravaged by disease decreases the likelihood of successful engraftment and restoration of function.”

In the study, his team tested the possibility of using lymph nodes, which are abundant throughout the body and have a rich blood supply, as a new home for cells from other organs in what is called an “ectopic” transplant.

They injected healthy liver cells from a genetically-identical donor animal into lymph nodes of mice at various locations. The result was an enlarged, liver-like node that functioned akin to the liver; in fact, a single hepatized lymph node rescued mice that were in danger of dying from a lethal metabolic liver disease. Likewise, thymus tissue transplanted into the lymph node of mice that lacked the organ generated functional immune systems, and pancreatic islet cell transplants restored normal blood sugar control in diabetic animals.

“Our goal is not necessarily to replace the entire liver, for example, but to provide sufficient cell mass to stabilize liver function and sustain the patient’s life,” Dr. Lagasse said. “That could buy time until a donor organ can be transplanted. Perhaps, in some cases, ectopic cell transplantation in the lymph node might allow the diseased organ to recover.”

Co-authors of the paper include Junji Komori, M.D., Ph.D., Lindsey Boone, Ph.D., and Aaron DeWard, Ph.D., all of Pitt’s Department of Pathology and the McGowan Institute, and Toshitaka Hoppo, M.D., Ph.D., of the McGowan Institute.

The project was funded by National Institutes of Health grants P30CA047904 (through the University of Pittsburgh Cancer Institute) and R01 DK085711.

Media Contact

Anita Srikameswaran EurekAlert!

More Information:

http://www.upmc.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors