Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liver Cells, Insulin-Producing Cells, Thymus Tissue Can Be Grown in Lymph Nodes, Pitt/McGowan Team Finds

28.09.2012
Lymph nodes can provide a suitable home for a variety of cells and tissues from other organs, suggesting that a cell-based alternative to whole organ transplantation might one day be feasible, according to researchers at the University of Pittsburgh School of Medicine and its McGowan Institute for Regenerative Medicine.
In a report recently published online in Nature Biotechnology, the research team showed for the first time that liver cells, thymus tissue and insulin-producing pancreatic islet cells, in an animal model, can thrive in lymph nodes despite being displaced from their natural sites.

Hepatitis virus infection, alcoholic cirrhosis and other diseases can cause so much damage that liver transplantation is the only way to save the patient, noted senior investigator Eric Lagasse, Pharm. D., Ph.D., associate professor, Department of Pathology, Pitt School of Medicine. Children with DiGeorge syndrome lack functional thymus glands to produce essential immune cells, and diabetes can be cured with a pancreas transplant.

“However, the scarcity of donor organs means many people will not survive the wait for transplantation,” said Dr. Lagasse, whose lab is at the McGowan Institute. “Cell therapies are being explored, but introducing cells into tissue already ravaged by disease decreases the likelihood of successful engraftment and restoration of function.”

In the study, his team tested the possibility of using lymph nodes, which are abundant throughout the body and have a rich blood supply, as a new home for cells from other organs in what is called an “ectopic” transplant.

They injected healthy liver cells from a genetically-identical donor animal into lymph nodes of mice at various locations. The result was an enlarged, liver-like node that functioned akin to the liver; in fact, a single hepatized lymph node rescued mice that were in danger of dying from a lethal metabolic liver disease. Likewise, thymus tissue transplanted into the lymph node of mice that lacked the organ generated functional immune systems, and pancreatic islet cell transplants restored normal blood sugar control in diabetic animals.

“Our goal is not necessarily to replace the entire liver, for example, but to provide sufficient cell mass to stabilize liver function and sustain the patient’s life,” Dr. Lagasse said. “That could buy time until a donor organ can be transplanted. Perhaps, in some cases, ectopic cell transplantation in the lymph node might allow the diseased organ to recover.”

Co-authors of the paper include Junji Komori, M.D., Ph.D., Lindsey Boone, Ph.D., and Aaron DeWard, Ph.D., all of Pitt’s Department of Pathology and the McGowan Institute, and Toshitaka Hoppo, M.D., Ph.D., of the McGowan Institute.

The project was funded by National Institutes of Health grants P30CA047904 (through the University of Pittsburgh Cancer Institute) and R01 DK085711.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>