Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lighting up tumors

20.11.2014

A fluorescent nanoprobe could become a universal, noninvasive method to identify and monitor tumors

A*STAR researchers have developed a hybrid metal–polymer nanoparticle that lights up in the acidic environment surrounding tumor cells[1]. Nonspecific probes that can identify any kind of tumor are extremely useful for monitoring the location and spread of cancer and the effects of treatment, as well as aiding initial diagnosis.


Intravenous administration of a hybrid metal–polymer nanoprobe causes tumor tissue to fluoresce.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Cancerous tumors typically have lower than normal pH levels, which correspond to increased acidity both inside the cells and within the extracellular microenvironment surrounding the cells. This simple difference between tumor cells and normal cells has led several research groups to develop probes that can detect the low pH of tumors using optical imaging, magnetic resonance and positron emission tomography.

Most of these probes, however, target the intracellular pH, which requires the probes to enter the cells in order to work. A greater challenge has been to detect the difference in extracellular pH between healthy tissue and tumor tissue as the pH difference is smaller. Success would mean that the probes are not required to enter the cells.

“Our aim is to address the challenge of illuminating tumors universally,” says Bin Liu from the A*STAR Institute of Materials Research and Engineering. Liu’s team, together with colleagues from the National University of Singapore, based their new probe on polymers that self-assemble on gold nanoparticles. The resulting hybrid structure is not fluorescent at normal physiological pH values: instead acidic conditions similar to those around tumor cells of approximately pH 6.5 alter chemical groups on the surface of the probes and switch on their fluorescence.

After validating the switching mechanism in pH-controlled solutions, the researchers tested the probes using cultured cells and also in tumor-bearing mice illuminated under bright light. Twenty-four hours after injection into the mice, obvious and clear fluorescence was seen only from tumor-bearing tissue, using either whole-body imaging or examination of removed organs (see image). The ability to observe the fluorescence of tumors using noninvasive whole-body examination of living mice indicates the potential of the nanoprobes for use in clinical situations with human patients.

“Our probes have so far proved to be biocompatible, which will be crucial for biomedical applications,” says Liu. “We now plan to check further for any toxicity issues and assess the biological distribution and pharmacological profile of the probes before hopefully moving on to clinical trials,” she adds. This is the latest of several recent advances in nanoscale medical technology from Liu’s group.

Reference:
[1] Yuan, Y., Ding, D., Li, K., Liu, J. & Liu, B. Tumor-responsive fluorescent light-up probe based on a gold nanoparticle/conjugated polyelectrolyte hybrid. Small 10, 1967–1975 (2014).


Associated links
A*STAR article

A*STAR Research | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>