Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light and Air

19.11.2012
Sunlight-driven CO2 fixation

The increased use of renewable energy sources, particularly sunlight, is highly desirable, as is industrial production that is as CO2-neutral as possible. Both of these wishes could be fulfilled if CO2 could be used as the raw material in a system driven by solar energy.



Japanese researchers have now introduced an approach to this type of process in the journal Angewandte Chemie. Their method is based on a principle similar to natural photosynthesis.

The use of carbon dioxide as a source of carbon may be an attractive option for reducing the consumption of fossil feedstocks and improving the CO2 footprint of chemical products. The biggest obstacle in our way is the high stability of the CO2 molecule. One of the possibilities for jumping this hurdle is to use very high-energy molecules to react with CO2.

The photosynthetic process in green plants provides an example of how this could work. This process takes place in two steps: the light reactions and the dark reactions. In the light reactions, the photosynthetic system captures photons and stores their energy in the form of energetic chemical compounds. These are subsequently used to drive the dark reactions that use CO2 as a carbon source to synthesize complex sugar molecules.

Researchers working with Masahiro Murakami at Kyoto University used the same principle to design their process. In this case, the first step is also a reaction driven by light. The action of UV light can convert the starting material, an á-methylamino ketone, to a very energetic molecule.

This also works with sunlight, as the researchers found out. An intramolecular rearrangement with ring closure results in a molecule containing a ring made of three carbon atoms and one nitrogen atom. This type of ring is under a great deal of strain and is correspondingly reactive. This “light reaction” was coupled to a “dark reaction”: In the subsequent light-independent step, the highly energetic compound captures CO2 in the presence of a base. This forms a cyclic amino-substituted carbonic acid diester that could be useful as an intermediate for chemical syntheses.

The striking thing about this reaction scheme is that the technique is simple. Diffuse sunlight on cloudy days is enough to drive the process. The second step can be carried out in the same reaction vessel through simple addition of the base and heating to 60 °C. The yield is 83 %. In addition, the process is very adaptable because a wide variety of á-methylamino ketones can be used as starting materials.

About the Author
Dr Masahiro Murakami is a Professor of Kyoto University. He has been working in the area of organic chemistry and organometallic chemistry, especially the development of new reactions directed towards organic synthesis. He is the recipient of the Nagoya Silver Medal.
Author: Masahiro Murakami, Kyoto University (Japan), http://www.sbchem.kyoto-u.ac.jp/murakami-lab/contact/contact.html
Title: Solar-Driven Incorporation of Carbon Dioxide into á-Amino Ketones
Angewandte Chemie International Edition 2012, 51, No. 47, 11750–11752, Permalink to the article: http://dx.doi.org/10.1002/anie.201206166

Masahiro Murakami | Wiley-VCH
Further information:
http://dx.doi.org/10.1002/anie.201206166
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Team pinpoints genes that make plant stem cells, revealing origin of beefsteak tomatoes
26.05.2015 | Cold Spring Harbor Laboratory

nachricht DNA double helix does double duty in assembling arrays of nanoparticles
26.05.2015 | DOE/Brookhaven National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Imaging test may identify biomarker of Alzheimer's disease

27.05.2015 | Health and Medicine

Experiments in the realm of the impossible

27.05.2015 | Physics and Astronomy

Over 70% of glacier volume in Everest region could be lost by 2100

27.05.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>