Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leaky Genes Put Evolution on the Fast Track, Pitt and UW-Madison Researchers Find

16.06.2011
The team traced the development of a unique feature in a species of fruit fly that began with low-level gene activity and became a distinct feature in a mere four mutations as an existing gene took on a new function, according to a report in PNAS

Small genetic mutations that add up over time could create an evolutionary express lane that leads to the rapid development of new traits, researchers from the University of Pittsburgh and the University of Wisconsin at Madison have found.

The team reports in the Proceedings of the National Academy of Sciences (PNAS) that slight changes in segments of DNA known as transcriptional enhancers—which determine the when, where, and how much in gene production—can activate dormant genetic imperfections. These alterations awaken specific genes to low-level activity, or “leakiness,” in developing tissue different from the genes’ typical location. Just a few subsequent mutations build on that stirring to result in a new function for an old gene—and possibly a novel trait.

Coauthor Mark Rebeiz [Ra-BAYS], a professor of biological sciences in Pitt’s School of Arts and Sciences, and his colleagues traced how a certain unwitting gene found itself in the unique optical neurons of a species of fruit fly. They found that tiny alterations in the transcriptional enhancers of the species’ ancestor caused the gene to take root in these neurons for the first time. A couple of mutations later and the gene became a permanent fixture in the fly’s brain cells. Rebeiz worked with coauthors Sean Carroll, professor of molecular biology and genetics at the UW-Madison; Nick Jikomes, an undergraduate researcher in Carroll’s laboratory; and Victoria Kassner, a research associate in Carroll’s lab.

The Pitt-UW Madison work expands on research during the past 30 years demonstrating that new genes made from scratch are rare in animals, Rebeiz said. Instead, the diversity of living things is thought to stem from existing genes showing up in new locations. In a famous example of the lack of originality in animal genes, researchers at the University of Basel in Switzerland reported in Science in 1995 that a gene known as PAX6, a “master control” gene for the formation of eyes and other features in flies, mice, and humans, could cause the growth of additional eyes on the legs and antennae of fruit flies.

With their report in PNAS, Rebeiz and his coauthors offer the first explanation of what makes these genes go astray in the first place—and they identified the deviant DNA as the culprit.

The researchers found that the gene Neprilysin-1 present in the optical neurons of the fruit fly species Drosophilia santomea emerged in that location about 400,000 years ago—a blip in evolutionary terms—in the last common ancestor the fly shared with its relative D. yakuba. The mutation began with a transcriptional enhancer for the gene, which caused Neprilysin-1 to show up in different neurons than usual.

From there, Rebeiz said, the development of D. santomea’s distinguishing neurons plays out with the clarity of a film as four mutations in subsequent generations intensify the errant enhancer’s impact until Neprilysin-1’s presence in optical neurons become an exclusive feature of D. santomea. On the other hand, ensuing genetic alterations in D. yakuba actually extinguished this new expression and restored that fly’s Neprilysin-1 to its original location.

“It has been long appreciated that nature doesn’t make anything from scratch, but the mystery has remained of how genes that have been performing the same job for hundreds of millions of years are suddenly expressed in new places,” Rebeiz said. “Our work shows that even slight mutations in a transcriptional enhancer can cause leaky gene activity, which can initiate a short route to the development of new traits.”

Morgan Kelly | EurekAlert!
Further information:
http://www.news.pitt.edu/news/Rebeiz-leaky-genes
http://www.pitt.edu

Further reports about: DNA Evolution Neprilysin-1 PNAS Pitt vaccine brain cell fruit fly genes genetic mutation specific gene

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>