Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landmark study links 13 new genes to heart disease

07.03.2011
Insight into the complex biological mechanisms that cause heart disease has taken a major step forward with the discovery of 13 new genes that increase the risk of coronary artery disease (CAD).

The influence of the majority of the new genes is independent of other established risk factors, suggesting new, unsuspected causes of CAD. The discovery more than doubles the number of genes known to affect the progression of heart disease.

The research also verified the association of 10 previously identified genes to the population at large, meaning their influence is not confined to a specific population. Of the 23 genes discovered or confirmed, only 6 could be linked to known risk factors such as cholesterol and high blood pressure, underscoring the direct and indirect role that genes play in influencing the course and evolution of heart disease.

"This is a landmark result because we have identified so many genes and most operate using completely unknown mechanisms to us right now," said Dr. Robert Roberts, President and CEO, University of Ottawa Heart Institute. "It has opened up significant new avenues for new therapies and underlines the complexities of heart disease."

These discoveries were published online today in Nature Genetics by one of the world's largest consortiums examining the genetic basis of heart disease. More than 100 research organizations took part in the study, including such internationally-acclaimed centres as the University of Lubeck (Germany), Stanford University, Harvard Medical School, University of Iceland, Johns Hopkins University, University of Leeds (UK), Wellcome Trust Sanger Institute, the University of Ottawa Heart Institute and others.

The study is also one of the world's largest. Called CARDIoGRAM (Coronary Artery Disease Genome-wide Replication and Meta-Analysis), researchers evaluated the genetic samples of more than 140,000 people of European descent, of which one third exhibited heart disease and the remainder (the control group) did not. Data from genetic research centres in Europe, the United Kingdom, the United States and the Heart Institute were combined to provide the massive sample size, which is essential to ferret out subtle genetic indicators.

"The consortium examined more than 10 times the number of samples than the largest study ever published, so we magnified the power to detect small genetic variations," said Dr. Roberts. "Now our job is to understand how these genes work, develop a new group of drugs to target them and identify people who will benefit most to reduce their risk of heart attack and other cardiac events."

"Our main aim of this extremely large study is to locate and examine new disease mechanisms and improve our means of preventing cardiovascular disease," said Dr. Thomas Quertermous, Professor of Cardiovascular Medicine, Stanford University, which participated in the research.

The Heart Institute's contributions to the consortium were led by the Institute's Ruddy Canadian Cardiovascular Genetics Centre. The Ruddy Centre is the only one of its type in Canada and only one of a handful of cardiovascular genetics research centres worldwide. The Ruddy Centre's scientific team included the director and principal investigator, Dr. Roberts, laboratory director Alexandre Stewart, PhD, biostatistician George A. Wells, and Dr. Ruth McPherson, an endocrinologist and molecular biologist.

The CARDIoGRAM study is the latest significant progress to emerge from the Heart Institute. The Institute previously identified gene 9p21 which was the first genetic risk factor recognized for heart disease and the first major new cardiovascular risk factor since the discovery of cholesterol. The Institute has also located a variety of other genes influencing diseases such as atrial fibrillation and biological processes such as obesity.

Research has shown that up to 40% of heart disease can be prevented by modifying cholesterol, high blood pressure, smoking and other lifestyle causes. At the same time, it is known that about 50% of the risk of heart disease is due to genetic factors. Comprehensive prevention programs are needed that not only deal with lifestyle issues but also address the genetic aspects of heart disease. When this occurs, it is believed that heart disease will be dramatically reduced or possibly eliminated within 50 years.

About UOHI

The University of Ottawa Heart Institute is Canada's largest and foremost cardiovascular health centre dedicated to understanding, treating and preventing heart disease. We deliver high-tech care with a personal touch, shape the way cardiovascular medicine is practiced, and revolutionize cardiac treatment and understanding. We build knowledge through research and translate discoveries into advanced care. We serve the local, national and international community, and are pioneering a new era in heart health. For more information, visit www.ottawaheart.ca

Editor: For more information on CARDIoGRAM, please visit http://www.nature.com/genetics/index.html

Marlene Orton | EurekAlert!
Further information:
http://www.ottawaheart.ca

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>