Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landmark study links 13 new genes to heart disease

07.03.2011
Insight into the complex biological mechanisms that cause heart disease has taken a major step forward with the discovery of 13 new genes that increase the risk of coronary artery disease (CAD).

The influence of the majority of the new genes is independent of other established risk factors, suggesting new, unsuspected causes of CAD. The discovery more than doubles the number of genes known to affect the progression of heart disease.

The research also verified the association of 10 previously identified genes to the population at large, meaning their influence is not confined to a specific population. Of the 23 genes discovered or confirmed, only 6 could be linked to known risk factors such as cholesterol and high blood pressure, underscoring the direct and indirect role that genes play in influencing the course and evolution of heart disease.

"This is a landmark result because we have identified so many genes and most operate using completely unknown mechanisms to us right now," said Dr. Robert Roberts, President and CEO, University of Ottawa Heart Institute. "It has opened up significant new avenues for new therapies and underlines the complexities of heart disease."

These discoveries were published online today in Nature Genetics by one of the world's largest consortiums examining the genetic basis of heart disease. More than 100 research organizations took part in the study, including such internationally-acclaimed centres as the University of Lubeck (Germany), Stanford University, Harvard Medical School, University of Iceland, Johns Hopkins University, University of Leeds (UK), Wellcome Trust Sanger Institute, the University of Ottawa Heart Institute and others.

The study is also one of the world's largest. Called CARDIoGRAM (Coronary Artery Disease Genome-wide Replication and Meta-Analysis), researchers evaluated the genetic samples of more than 140,000 people of European descent, of which one third exhibited heart disease and the remainder (the control group) did not. Data from genetic research centres in Europe, the United Kingdom, the United States and the Heart Institute were combined to provide the massive sample size, which is essential to ferret out subtle genetic indicators.

"The consortium examined more than 10 times the number of samples than the largest study ever published, so we magnified the power to detect small genetic variations," said Dr. Roberts. "Now our job is to understand how these genes work, develop a new group of drugs to target them and identify people who will benefit most to reduce their risk of heart attack and other cardiac events."

"Our main aim of this extremely large study is to locate and examine new disease mechanisms and improve our means of preventing cardiovascular disease," said Dr. Thomas Quertermous, Professor of Cardiovascular Medicine, Stanford University, which participated in the research.

The Heart Institute's contributions to the consortium were led by the Institute's Ruddy Canadian Cardiovascular Genetics Centre. The Ruddy Centre is the only one of its type in Canada and only one of a handful of cardiovascular genetics research centres worldwide. The Ruddy Centre's scientific team included the director and principal investigator, Dr. Roberts, laboratory director Alexandre Stewart, PhD, biostatistician George A. Wells, and Dr. Ruth McPherson, an endocrinologist and molecular biologist.

The CARDIoGRAM study is the latest significant progress to emerge from the Heart Institute. The Institute previously identified gene 9p21 which was the first genetic risk factor recognized for heart disease and the first major new cardiovascular risk factor since the discovery of cholesterol. The Institute has also located a variety of other genes influencing diseases such as atrial fibrillation and biological processes such as obesity.

Research has shown that up to 40% of heart disease can be prevented by modifying cholesterol, high blood pressure, smoking and other lifestyle causes. At the same time, it is known that about 50% of the risk of heart disease is due to genetic factors. Comprehensive prevention programs are needed that not only deal with lifestyle issues but also address the genetic aspects of heart disease. When this occurs, it is believed that heart disease will be dramatically reduced or possibly eliminated within 50 years.

About UOHI

The University of Ottawa Heart Institute is Canada's largest and foremost cardiovascular health centre dedicated to understanding, treating and preventing heart disease. We deliver high-tech care with a personal touch, shape the way cardiovascular medicine is practiced, and revolutionize cardiac treatment and understanding. We build knowledge through research and translate discoveries into advanced care. We serve the local, national and international community, and are pioneering a new era in heart health. For more information, visit www.ottawaheart.ca

Editor: For more information on CARDIoGRAM, please visit http://www.nature.com/genetics/index.html

Marlene Orton | EurekAlert!
Further information:
http://www.ottawaheart.ca

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>