Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landmark study links 13 new genes to heart disease

07.03.2011
Insight into the complex biological mechanisms that cause heart disease has taken a major step forward with the discovery of 13 new genes that increase the risk of coronary artery disease (CAD).

The influence of the majority of the new genes is independent of other established risk factors, suggesting new, unsuspected causes of CAD. The discovery more than doubles the number of genes known to affect the progression of heart disease.

The research also verified the association of 10 previously identified genes to the population at large, meaning their influence is not confined to a specific population. Of the 23 genes discovered or confirmed, only 6 could be linked to known risk factors such as cholesterol and high blood pressure, underscoring the direct and indirect role that genes play in influencing the course and evolution of heart disease.

"This is a landmark result because we have identified so many genes and most operate using completely unknown mechanisms to us right now," said Dr. Robert Roberts, President and CEO, University of Ottawa Heart Institute. "It has opened up significant new avenues for new therapies and underlines the complexities of heart disease."

These discoveries were published online today in Nature Genetics by one of the world's largest consortiums examining the genetic basis of heart disease. More than 100 research organizations took part in the study, including such internationally-acclaimed centres as the University of Lubeck (Germany), Stanford University, Harvard Medical School, University of Iceland, Johns Hopkins University, University of Leeds (UK), Wellcome Trust Sanger Institute, the University of Ottawa Heart Institute and others.

The study is also one of the world's largest. Called CARDIoGRAM (Coronary Artery Disease Genome-wide Replication and Meta-Analysis), researchers evaluated the genetic samples of more than 140,000 people of European descent, of which one third exhibited heart disease and the remainder (the control group) did not. Data from genetic research centres in Europe, the United Kingdom, the United States and the Heart Institute were combined to provide the massive sample size, which is essential to ferret out subtle genetic indicators.

"The consortium examined more than 10 times the number of samples than the largest study ever published, so we magnified the power to detect small genetic variations," said Dr. Roberts. "Now our job is to understand how these genes work, develop a new group of drugs to target them and identify people who will benefit most to reduce their risk of heart attack and other cardiac events."

"Our main aim of this extremely large study is to locate and examine new disease mechanisms and improve our means of preventing cardiovascular disease," said Dr. Thomas Quertermous, Professor of Cardiovascular Medicine, Stanford University, which participated in the research.

The Heart Institute's contributions to the consortium were led by the Institute's Ruddy Canadian Cardiovascular Genetics Centre. The Ruddy Centre is the only one of its type in Canada and only one of a handful of cardiovascular genetics research centres worldwide. The Ruddy Centre's scientific team included the director and principal investigator, Dr. Roberts, laboratory director Alexandre Stewart, PhD, biostatistician George A. Wells, and Dr. Ruth McPherson, an endocrinologist and molecular biologist.

The CARDIoGRAM study is the latest significant progress to emerge from the Heart Institute. The Institute previously identified gene 9p21 which was the first genetic risk factor recognized for heart disease and the first major new cardiovascular risk factor since the discovery of cholesterol. The Institute has also located a variety of other genes influencing diseases such as atrial fibrillation and biological processes such as obesity.

Research has shown that up to 40% of heart disease can be prevented by modifying cholesterol, high blood pressure, smoking and other lifestyle causes. At the same time, it is known that about 50% of the risk of heart disease is due to genetic factors. Comprehensive prevention programs are needed that not only deal with lifestyle issues but also address the genetic aspects of heart disease. When this occurs, it is believed that heart disease will be dramatically reduced or possibly eliminated within 50 years.

About UOHI

The University of Ottawa Heart Institute is Canada's largest and foremost cardiovascular health centre dedicated to understanding, treating and preventing heart disease. We deliver high-tech care with a personal touch, shape the way cardiovascular medicine is practiced, and revolutionize cardiac treatment and understanding. We build knowledge through research and translate discoveries into advanced care. We serve the local, national and international community, and are pioneering a new era in heart health. For more information, visit www.ottawaheart.ca

Editor: For more information on CARDIoGRAM, please visit http://www.nature.com/genetics/index.html

Marlene Orton | EurekAlert!
Further information:
http://www.ottawaheart.ca

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>