Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joslin Scientists Identify Molecular Process in Fat Cells That Influences Stress and Longevity

28.09.2012
As part of their ongoing research investigating the biology of aging, the greatest risk factor for type 2 diabetes and other serious diseases, scientists at Joslin Diabetes Center have identified a new factor — microRNA processing in fat tissue — which plays a major role in aging and stress resistance.

This finding may lead to the development of treatments that increase stress resistance and longevity and improve metabolism. The findings appear in the September 5 online edition of Cell Metabolism.

Over the past several years, it has become clear that fat cells (adipocytes) are more than just repositories to store fat. Indeed, fat cells secrete a number of substances that actively influence metabolism and systemic inflammation. Previous studies have found that reducing fat mass by caloric restriction (CR) or surgical or genetic means can promote longevity and stress resistance in species from yeast to primates.

However, little is known about how CR and fat reduction produce these beneficial effects. This study investigated one type of molecular mediator – change in microRNAs (miRNAs) and the processing enzymes required to make them– that is influenced by aging and reversed by caloric restriction. miRNAs are involved in the formation of mature RNA.

Based on studies conducted using human cells, mice and C. elegans (a microscopic worm used as a model organism for aging studies), the researchers demonstrated that levels of multiple miRNAs, decrease in fat tissue (adipose) with age in all three species. This is due to a decrease in the critical enzyme required from converted pre-miRNAs to mature miRNAs, Dicer. In the human study, which compared the miRNA levels in preadipocytes (fat cell precusors) of young, middle-aged and older people, people aged 70 and older had the lowest miRNA levels. “The fact that this change occurs in humans, mice and worms points to its significance as a general and important process,” says lead author C. Ronald Kahn, MD, Chief Academic Officer at Joslin Diabetes Center and the Mary K. Iacocca Professor of Medicine at Harvard Medical School.

Caloric restriction, which has been shown to prolong lifespan and improve stress resistance in both mice and worms, prevents this decline of Dicer, and in the case of the mice, restore miRNAs to levels observed in young mice. Conversely, exposure of adipocytes to major stressors associated with aging and metabolic diseases, including toxic agents, Dicer levels decreased. Mice and worms engineered to have decreased Dicer expression in fat showed increased sensitivity to stress, a sign of premature aging. By contrast, worms engineered to “overexpress” Dicer in the intestine (the adipose tissue equivalent in worms) had greater stress resistance and lived longer.

Overall, these studies showed that regulation of miRNA processing in adipose-related tissues plays an important role in longevity and an organism’s ability to respond to age-related and environmental stress. “This study points to a completely new mechanism by which fat might affect lifespan and is the first time that anyone has looked at fat and miRNAs as factors in longevity,” according to co-author T. Keith Blackwell, MD, PhD, co-head of Joslin's Section on Islet Cell and Regenerative Biology and Professor of Pathology at Harvard Medical School.

Based on this study, Blackwell suggests that “finding ways to improve miRNA processing to keep miRNA levels up during aging might have a role in protecting against the stresses of everyday life and the development of age- and stress-related disease.”

Dr. Kahn and the study investigators are currently working on ways to genetically control Dicer levels in the fat tissues of mice, to create mouse models that are more or less resistant to stress. “We would love to find drugs that would mimic this genetic manipulation to produce a beneficial effect,” says Dr. Kahn. “If we can better understand the biology of aging, we might also understand how age impacts diabetes,” says Kahn.

Study co-authors include Marcelo A. Mori, Prashant Raghavan, Jeremie Boucher, Stacey Robida-Stubbs, Yazmin Macotela, Steven J. Russell, and T. Keith Blackwell of Joslin; and James L. Kirkland and Thomas Thomou of the Mayo Clinic.

About Joslin Diabetes Center

Joslin Diabetes Center, located in Boston, Massachusetts, is the world's largest diabetes research and clinical care organization. Joslin is dedicated to ensuring that people with diabetes live long, healthy lives and offers real hope and progress toward diabetes prevention and a cure. Joslin is an independent, nonprofit institution affiliated with Harvard Medical School.

Our mission is to prevent, treat and cure diabetes. Our vision is a world free of diabetes and its complications.

Jeffrey Bright | Newswise Science News
Further information:
http://www.joslin.org

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>