Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jet-propelled wastewater treatment

19.12.2013
Swimming microengines made from platinum and iron are highly efficient in removing organic pollutants from water using hydrogen peroxide.

Researchers from the Max Planck Institute for Intelligent Systems in Stuttgart have developed a new method for the active degradation of organic pollutants in solution by using swimming microengines.


Microtubes for wastewater treatment: the tubes, which are approx.500 micrometres long, consist of an outer iron layer and an inner platinum layer. kroröhrchen für On the iron layer, hydrogen peroxide , which is added to the water, degrades organic pollutants to carbon dioxide and water. On the inner platinum layer, hydrogen peroxide degrades into oxygen and water. The microtube thus turns into a propelled microjet: the oxygen bubbles flowing from the microtube push it into one direction. The swimming microcleaners clean water about 12 times faster than iron microtubes.

© MPI for Intelligent Systems

The mobile microcleaners consist of an outer iron and an inner platinum layer, thereby combining two functionalities. Hydrogen peroxide, which must be added to the contaminated solution, acts as fuel for the platinum micromotors and as reagent for degrading organic pollutants on the iron layer. Not many methods for the successful cleaning of polluted wastewaters exist.

The Fenton reaction, one of the most popular advanced oxidation processes for the degradation of organic pollutants, relies on spontaneous acidic corrosion of the iron micromotor surface in the presence of hydrogen peroxide. The scientists report that the oxidation of organic pollutants achieved by a swarm of these self-propelled microjets is twelve times higher than when using immobile iron microtubes.

Microtubes for wastewater treatment: the tubes, which are approx.500 micrometres long, consist of an outer iron layer and an inner platinum layer. kroröhrchen für On the iron layer, hydrogen peroxide , which is added to the water, degrades organic pollutants to carbon dioxide and water.

On the inner platinum layer, hydrogen peroxide degrades into oxygen and water. The microtube thus turns into a propelled microjet: the oxygen bubbles flowing from the microtube push it into one direction. The swimming microcleaners clean water about 12 times faster than iron microtubes.

Common water treatment methods are inefficient in removing most types of organic pollutants. Mineral oils, pesticides, organic solvents, paints and organochlorides cannot be removed using choride, ozone or flocculation methods that are part of regular water processing procedures. The Fenton reaction, on the other hand, is highly efficient in removing these pollutants.

The term ‘Fenton reaction’ refers to the use of a combination of iron and hydrogen peroxide to oxidize organic pollutants, thereby degrading them to carbon dioxide and water. The multi-stage reaction is catalysed by Fe(II) ions. The group of Samuel Sánchez at the Max Planck Institute for Intelligent Systems has now combined the best of two worlds and created a two-layered, self-propelled version of this microscopic cleaning system.

Their microjets have an inner platinum micromotor fuelled by hydrogen peroxide and an outer cleaning layer where hydrogen peroxide reacts with organic pollutants in the presence of iron. The Fe(II) ions that are needed as catalysts for the Fenton reaction are formed when the iron on the outer tube surface establishes contact with water.

To produce their mobile cleaning systems, the researchers used a method for rolling up metal thin films that was developed only a few years back. They evaporated a 100-200 nanometre thin layer of iron onto a glass surface coated with a dense pattern of aligned lacquer squares. In a second step, the researchers added a platinum layer of only one nanometre thickness, using a special sputtering technique. Due the different mechanical properties of the metals, the double layer starts to roll up into a tube-shape once the lacquer layer is removed. “This technique allows us to produce large numbers of multifunctional tubes", says Samuel Sánchez, the head of the Max Planck Research Group in Stuttgart.

Oxygen bubbles turn the microtubes into a jet engine

The platinum layer functions as an engine, because, much like iron, it catalyses a chemical reaction with the oxidizing agent hydrogen peroxide. “Hydrogen peroxide acts as fuel for our miniature submarines,” explains Luis Soler, a scientist in the research group. When hydrogen peroxide and platinum react, platinum acts as a catalyst for the decomposition of hydrogen peroxide into water and oxygen, thereby forming small bubbles. As more and more bubbles are produced, they escape from the tube. Initially, differing amounts of oxygen exit on either side of the tube and the tube is randomly jet-propelled. As soon as the tube has reached a certain speed, though, all bubbles escape to one side, and the tube is thrust into the opposite direction of the escaping bubbles, thereby feeding more fuel into the front end.

The initial idea to encase platinum microengines with an iron layer came to life while the scientists were thinking about an entirely different problem. Typical visions of the technological possibilities of future micro- and nanomotors include the rapid transportation of pharmaceutical agents to specific target areas like tumour cells, for example. Upon arrival, they would drill through the cell membrane like a nanocanula and inject the active agent directly into the target cell. However, one large obstacle remains in the way of achieving this vision: hydrogen peroxide, like all other fuels that have been developed for these motors, harms living organisms. And this is where the idea for a new application comes in: the scientists decided to employ their micromotors in places where the use of hydrogen peroxide is not a disadvantage, but rather serves an important function as co-reagent.

A novel remedy against paint residues and pesticides

Because the iron layer is also magnetic, the tubes can be steered to pollutants that are difficult to reach and they can be recovered after their job is done. And, superfluous hydrogen peroxide will not affect subsequent water processing, because it is steadily, but slowly, degraded to water and oxygen by sunlight.

Samuel Sánchez explains the group’s motivation, “We wanted to construct micromotors that have a meaningful application.” Then he points out: “The biggest limitation is that this type of water remediation only works on a small scale, thus far. Therefore, the road to industrial application is still long and winding.” However, this new technology paves the way towards the use of multifunctional micromotors for environmental applications. Luis Soler adds, “I can well envision that one day these micromotors will successfully serve to clean water from paint residues from the textile industry and pesticides from agriculture.”

Contact
Dr. Samuel Sánchez
Max Planck Institute for Intelligent Systems, Stuttgart site, Stuttgart
Phone: +49 711 689-1846
Email: Sanchez@is.mpg.de
Original publication
Lluís Soler, Veronika Magdanz, Vladimir M. Fomin, Samuel Sánchez und Oliver G. Schmidt
Self-Propelled Micromotors for Cleaning Polluted Water
ACS Nano, 1 November 2013; DOI: 10.1021/nn405075d

Dr. Samuel Sánchez | Max-Planck-Institute
Further information:
http://www.mpg.de/7676965/mikroroehrchen_abwasser_reinigung

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>