Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Involuntary Maybe, but Certainly Not Random

16.02.2009
Our eyes are in constant motion. Even when we attempt to stare straight at a stationary target, our eyes jump and jiggle imperceptibly.

Although these unconscious flicks, also known as microsaccades, had long been considered mere “motor noise,” researchers at the Salk Institute for Biological Studies found that they are instead actively controlled by the same brain region that instructs our eyes to scan the lines in a newspaper or follow a moving object.

Their findings, published in the Feb. 13, 2009 issue of Science, provide new insights into the importance of these movements in generating normal vision.

“For several decades, scientists have debated the function, if any, of these fixational eye movements,” says Richard Krauzlis, Ph.D., an associate professor in the Salk Institute’s Systems Neurobiology Laboratory, who led the current study. “Our results show that the neural circuit for generating microsaccades is essentially the same as that for voluntary eye movements. This implies that they are caused by the minute fluctuations in how the brain represents where you want to look.”

“There was a lot of past effort to figure out what fixational eye movements contribute to our vision,” adds lead author Ziad Hafed, Ph.D., Sloan-Swartz Fellow in the Systems Neurobiology Laboratory, “but nobody had looked at the neural mechanism that generates these movements. Without such knowledge, one could only go so far in evaluating microsaccades’ significance and why they actually exist.”

Wondering whether the command center responsible for generating fixational eye movements resides within the same brain structure that is in charge of initiating and directing large voluntary eye movements, Hafed decided to measure neural activity in the superior colliculus before and during microsaccades.

He not only discovered that the superior colliculus is an integral part of the neural mechanism that controls microsaccades, but he also found that individual neurons in the superior colliculus are highly specific about which particular microsaccade directions and amplitudes they command—whether they be, say, rightward or downward or even oblique movements. “Data from the population of neurons we analyzed shows that the superior colliculus contains a remarkably precise representation of amplitude and direction down to the tiniest of eye movements,” says Krauzlis.

The Salk researchers, in collaboration with Laurent Goffart, Ph.D., a professor at the Institut de Neurosciences Cognitives de la Méditerranée in Marseille, France, also temporarily inactivated a subset of superior colliculus neurons and analyzed the resulting changes in microsaccades. They discovered that a fully functional superior colliculus is required to generate normal microsaccades.

“Because images on the retina fade from view if they are perfectly stabilized, the active generation of fixational eye movements by the central nervous system allows these movements to constantly shift the scene ever so slightly, thus refreshing the images on our retina and preventing us from going ‘blind,’” explains Hafed. “When images begin to fade, the uncertainty about where to look increases the fluctuations in superior colliculus activity, triggering a microsaccade,” adds Krauzlis.

Microsaccades may, however, do more than prevent the world around us from fading when we stare at it for too long. Even when our gaze is fixed, our attention can shift to an object at the periphery that attracts our interest. In an earlier study, Hafed discovered that although we may avert our eyes from an attractive man or woman, microsaccades will reveal such objects of attraction because their direction is biased toward objects to which we are unconsciously attracted.

By showing in the current study that the superior colliculus is involved in generating microsaccades, Hafed and his colleagues could now explain why this happens. “The superior colliculus is a major determinant of what is behaviorally relevant in our visual environment, so paying attention to one location or the other alters superior colliculus activity and therefore alters these eye movements as well,” says Hafed.

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health, and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Gina Kirchweger | Newswise Science News
Further information:
http://www.salk.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>