Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Involuntary Maybe, but Certainly Not Random

16.02.2009
Our eyes are in constant motion. Even when we attempt to stare straight at a stationary target, our eyes jump and jiggle imperceptibly.

Although these unconscious flicks, also known as microsaccades, had long been considered mere “motor noise,” researchers at the Salk Institute for Biological Studies found that they are instead actively controlled by the same brain region that instructs our eyes to scan the lines in a newspaper or follow a moving object.

Their findings, published in the Feb. 13, 2009 issue of Science, provide new insights into the importance of these movements in generating normal vision.

“For several decades, scientists have debated the function, if any, of these fixational eye movements,” says Richard Krauzlis, Ph.D., an associate professor in the Salk Institute’s Systems Neurobiology Laboratory, who led the current study. “Our results show that the neural circuit for generating microsaccades is essentially the same as that for voluntary eye movements. This implies that they are caused by the minute fluctuations in how the brain represents where you want to look.”

“There was a lot of past effort to figure out what fixational eye movements contribute to our vision,” adds lead author Ziad Hafed, Ph.D., Sloan-Swartz Fellow in the Systems Neurobiology Laboratory, “but nobody had looked at the neural mechanism that generates these movements. Without such knowledge, one could only go so far in evaluating microsaccades’ significance and why they actually exist.”

Wondering whether the command center responsible for generating fixational eye movements resides within the same brain structure that is in charge of initiating and directing large voluntary eye movements, Hafed decided to measure neural activity in the superior colliculus before and during microsaccades.

He not only discovered that the superior colliculus is an integral part of the neural mechanism that controls microsaccades, but he also found that individual neurons in the superior colliculus are highly specific about which particular microsaccade directions and amplitudes they command—whether they be, say, rightward or downward or even oblique movements. “Data from the population of neurons we analyzed shows that the superior colliculus contains a remarkably precise representation of amplitude and direction down to the tiniest of eye movements,” says Krauzlis.

The Salk researchers, in collaboration with Laurent Goffart, Ph.D., a professor at the Institut de Neurosciences Cognitives de la Méditerranée in Marseille, France, also temporarily inactivated a subset of superior colliculus neurons and analyzed the resulting changes in microsaccades. They discovered that a fully functional superior colliculus is required to generate normal microsaccades.

“Because images on the retina fade from view if they are perfectly stabilized, the active generation of fixational eye movements by the central nervous system allows these movements to constantly shift the scene ever so slightly, thus refreshing the images on our retina and preventing us from going ‘blind,’” explains Hafed. “When images begin to fade, the uncertainty about where to look increases the fluctuations in superior colliculus activity, triggering a microsaccade,” adds Krauzlis.

Microsaccades may, however, do more than prevent the world around us from fading when we stare at it for too long. Even when our gaze is fixed, our attention can shift to an object at the periphery that attracts our interest. In an earlier study, Hafed discovered that although we may avert our eyes from an attractive man or woman, microsaccades will reveal such objects of attraction because their direction is biased toward objects to which we are unconsciously attracted.

By showing in the current study that the superior colliculus is involved in generating microsaccades, Hafed and his colleagues could now explain why this happens. “The superior colliculus is a major determinant of what is behaviorally relevant in our visual environment, so paying attention to one location or the other alters superior colliculus activity and therefore alters these eye movements as well,” says Hafed.

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health, and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Gina Kirchweger | Newswise Science News
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>