Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inspired by insects

27.04.2012
For treatment of vocal fold disorders, UD researchers look to insect protein
A one-inch long grasshopper can leap a distance of about 20 inches. Cicadas can produce sound at about the same frequency as radio waves. Fleas measuring only millimeters can jump an astonishing 100 times their height in microseconds. How do they do it? They make use of a naturally occurring protein called resilin.

Resilin is a protein in the composite structures found in the leg and wing joints, and sound producing organs of insects. Highly elastic, it responds to exceptionally high rates of speed and demonstrates unmatched resilience after being stretched or deformed.
Kristi Kiick, professor of materials science and engineering and biomedical engineering at the University of Delaware, believes this unusual protein may also be a key to unlocking the regenerative power of certain mechanically active tissues.

Through support from the National Science Foundation and the National Institutes of Health (NIH), the Kiick research group has developed new cell-interactive resilin-like materials that have mechanical properties similar to the natural protein and that are engineered to support the growth of multiple types of cells.

Kiick has teamed with Xinqiao Jia, associate professor of materials science and engineering and biomedical engineering, to explore the potential of these resilin-like materials for treating vocal fold disorders in humans.

Vocal folds vibrate more than 100 times a second at very high frequencies, enabling humans to form words and speak. Damaged vocal folds can impair voice production, resulting in an expensive health care problem. According to NIH estimates, the societal cost of voice problems in teachers alone is on the order of $2.5 billion annually in the United States.

Development of new materials to treat vocal fold disorders, however, have been hampered by the stringent mechanical requirements of the vocal fold, which include the ability to both sustain deformation at frequencies as high as 1,000Hz, and also to completely recoil after stretching up to 200 percent.

Through the support from National Institute on Deafness and Other Communication Disorders (NIDCD), the Jia research group has made significant progress towards engineering artificial vocal folds via the strategic combination of multipotent cells, biomimetic and bioactive hydrogel matrices and external high frequency vibratory stimulations.

Sophisticated equipment, such as a torsional wave apparatus, has enabled her group to analyze the mechanical properties of various vocal fold tissues and the replacement materials at phonation frequencies.

To complement this work, Kiick’s research group has developed a new polypeptide hydrogel that displays characteristics and capabilities similar to its natural resilin counterpart. The hydrogel not only mimics the mechanical properties of naturally occurring resilin, it has also been engineered to contain modules that support cell adhesion and permit degradation, important factors in permitting the growth of native tissue into the gel.

A critical element of the project is the collaborative work of the Kiick and Jia groups, which “will enable us to design new materials, develop methods to characterize and culture materials at high frequencies, and then test this new class of materials for healing vocal fold tissue,” explained Kiick, principal investigator on the NIH grant funding the work.

Now, Kiick and Jia are studying these materials to determine if they can be used in vocal fold regeneration. The research team plans to culture human mesenchymal stem cells (hMSCs), taken from the bone marrow of adult patients, in these matrices under vibrations like those experienced in the vocal fold to determine if the cells become the kinds of cells found in the vocal fold. They will also investigate whether the cell-gel matrices exhibit biochemical and mechanical properties like those of healthy vocal fold tissue.

As a final step, the researchers will work in collaboration with vocal fold specialists Susan Thibeault and Timothy McCulloch, at the University of Wisconsin Madison, to test the ability of these new materials as injectable therapies to heal vocal fold scarring in laboratory models.

“In addition to their potential use for vocal fold disorders, we are excited that these novel polypeptides may ultimately be useful as a general platform in the design of materials for mechanically demanding regenerative medicine applications,” added Kiick.

Article by Karen B. Roberts

Photos by Duane Perry and Kathy F. Atkinson

Andrea Boyle Tippett | EurekAlert!
Further information:
http://www.udel.edu

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>