Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inspired by insects

27.04.2012
For treatment of vocal fold disorders, UD researchers look to insect protein
A one-inch long grasshopper can leap a distance of about 20 inches. Cicadas can produce sound at about the same frequency as radio waves. Fleas measuring only millimeters can jump an astonishing 100 times their height in microseconds. How do they do it? They make use of a naturally occurring protein called resilin.

Resilin is a protein in the composite structures found in the leg and wing joints, and sound producing organs of insects. Highly elastic, it responds to exceptionally high rates of speed and demonstrates unmatched resilience after being stretched or deformed.
Kristi Kiick, professor of materials science and engineering and biomedical engineering at the University of Delaware, believes this unusual protein may also be a key to unlocking the regenerative power of certain mechanically active tissues.

Through support from the National Science Foundation and the National Institutes of Health (NIH), the Kiick research group has developed new cell-interactive resilin-like materials that have mechanical properties similar to the natural protein and that are engineered to support the growth of multiple types of cells.

Kiick has teamed with Xinqiao Jia, associate professor of materials science and engineering and biomedical engineering, to explore the potential of these resilin-like materials for treating vocal fold disorders in humans.

Vocal folds vibrate more than 100 times a second at very high frequencies, enabling humans to form words and speak. Damaged vocal folds can impair voice production, resulting in an expensive health care problem. According to NIH estimates, the societal cost of voice problems in teachers alone is on the order of $2.5 billion annually in the United States.

Development of new materials to treat vocal fold disorders, however, have been hampered by the stringent mechanical requirements of the vocal fold, which include the ability to both sustain deformation at frequencies as high as 1,000Hz, and also to completely recoil after stretching up to 200 percent.

Through the support from National Institute on Deafness and Other Communication Disorders (NIDCD), the Jia research group has made significant progress towards engineering artificial vocal folds via the strategic combination of multipotent cells, biomimetic and bioactive hydrogel matrices and external high frequency vibratory stimulations.

Sophisticated equipment, such as a torsional wave apparatus, has enabled her group to analyze the mechanical properties of various vocal fold tissues and the replacement materials at phonation frequencies.

To complement this work, Kiick’s research group has developed a new polypeptide hydrogel that displays characteristics and capabilities similar to its natural resilin counterpart. The hydrogel not only mimics the mechanical properties of naturally occurring resilin, it has also been engineered to contain modules that support cell adhesion and permit degradation, important factors in permitting the growth of native tissue into the gel.

A critical element of the project is the collaborative work of the Kiick and Jia groups, which “will enable us to design new materials, develop methods to characterize and culture materials at high frequencies, and then test this new class of materials for healing vocal fold tissue,” explained Kiick, principal investigator on the NIH grant funding the work.

Now, Kiick and Jia are studying these materials to determine if they can be used in vocal fold regeneration. The research team plans to culture human mesenchymal stem cells (hMSCs), taken from the bone marrow of adult patients, in these matrices under vibrations like those experienced in the vocal fold to determine if the cells become the kinds of cells found in the vocal fold. They will also investigate whether the cell-gel matrices exhibit biochemical and mechanical properties like those of healthy vocal fold tissue.

As a final step, the researchers will work in collaboration with vocal fold specialists Susan Thibeault and Timothy McCulloch, at the University of Wisconsin Madison, to test the ability of these new materials as injectable therapies to heal vocal fold scarring in laboratory models.

“In addition to their potential use for vocal fold disorders, we are excited that these novel polypeptides may ultimately be useful as a general platform in the design of materials for mechanically demanding regenerative medicine applications,” added Kiick.

Article by Karen B. Roberts

Photos by Duane Perry and Kathy F. Atkinson

Andrea Boyle Tippett | EurekAlert!
Further information:
http://www.udel.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>