Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved characterization of nanoparticle clusters for EHS and biosensors research

27.10.2011
The tendency of nanoparticles to clump together in solution—"agglomeration"—is of great interest because the size of the clusters plays an important role in the behavior of the materials.

Toxicity, the persistence of the nanomaterials in the environment, their efficacy as biosensors and, for that matter, the accuracy of experiments to measure these factors, are all known to be affected by agglomeration and cluster size. Recent work* at the National Institute of Standards and Technology (NIST) offers a way to measure accurately both the distribution of cluster sizes in a sample and the characteristic light absorption for each size. The latter is important for the application of nanoparticles in biosensors.


Clusters of roughly 30-nanometer gold nanoparticles imaged by transmission electron microscopy. (Color added for clarity.)
Credit: Keene, FDA

A good example of the potential application of the work, says NIST biomedical engineer Justin Zook, is in the development of nanoparticle biosensors for ultrasensitive pregnancy tests. Gold nanoparticles can be coated with antibodies to a hormone** produced by an embryo shortly after conception. Multiple gold nanoparticles can bind to each hormone, forming clusters that have a different color from unclustered gold nanoparticles. But only certain size clusters are optimal for this measurement, so knowing how light absorbance changes with cluster size makes it easier to design the biosensors to result in just the right sized clusters.

The NIST team first prepared samples of gold nanoparticles—a nanomaterial widely used in biology—in a standard cell culture solution, using their previously developed technique for creating samples with a controlled distribution of sizes***. The particles are allowed to agglomerate in gradually growing clusters and the clumping process is "turned off" after varying lengths of time by adding a stabilizing agent that prevents further agglomeration.

They then used a technique called analytical ultracentrifugation (AUC) to simultaneously sort the clusters by size and measure their light absorption. The centrifuge causes the nanoparticle clusters to separate by size, the smaller, lighter clusters moving more slowly than the larger ones. While this is happening, the sample containers are repeatedly scanned with light and the amount of light passing through the sample for each color or frequency is recorded. The larger the cluster, the more light is absorbed by lower frequencies. Measuring the absorption by frequency across the sample containers allows the researchers both to watch the gradual separation of cluster sizes and to correlate absorbed frequencies with specific cluster sizes.

Most previous measurements of absorption spectra for solutions of nanoparticles were able only to measure the bulk spectra—the absorption of all the different cluster sizes mixed together. AUC makes it possible to measure the quantity and distribution of each nanoparticle cluster without being confounded by other components in complex biological mixtures, such as proteins. The technique previously had been used only to make these measurements for single nanoparticles in solution. The NIST researchers are the first to show that the procedure also works for nanoparticle clusters.

* J.M. Zook, V. Rastogi, R.I. MacCuspie, A.M. Keene and J. Fagan. Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation. ACS Nano, Articles ASAP (As Soon As Publishable). Publication Date (Web): Sept. 3, 2011 DOI: 10.1021/nn202645b.
** HCG: Human chorionic gonadotropin.
*** See J.M. Zook, R.I. MacCuspie, L.E. Locascio, M.D. Halter and J.T. Elliott. Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology, published online Dec. 13, 2010 (DOI: 10.3109/17435390.2010.536615) and the Feb. 2, 2011, NIST Tech Beat article, "NIST Technique Controls Sizes of Nanoparticle Clusters for EHS Studies," at www.nist.gov/public_affairs/tech-beat/tb20110202.cfm#nanoparticles.

Michael E. Newman | EurekAlert!
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>