Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved characterization of nanoparticle clusters for EHS and biosensors research

27.10.2011
The tendency of nanoparticles to clump together in solution—"agglomeration"—is of great interest because the size of the clusters plays an important role in the behavior of the materials.

Toxicity, the persistence of the nanomaterials in the environment, their efficacy as biosensors and, for that matter, the accuracy of experiments to measure these factors, are all known to be affected by agglomeration and cluster size. Recent work* at the National Institute of Standards and Technology (NIST) offers a way to measure accurately both the distribution of cluster sizes in a sample and the characteristic light absorption for each size. The latter is important for the application of nanoparticles in biosensors.


Clusters of roughly 30-nanometer gold nanoparticles imaged by transmission electron microscopy. (Color added for clarity.)
Credit: Keene, FDA

A good example of the potential application of the work, says NIST biomedical engineer Justin Zook, is in the development of nanoparticle biosensors for ultrasensitive pregnancy tests. Gold nanoparticles can be coated with antibodies to a hormone** produced by an embryo shortly after conception. Multiple gold nanoparticles can bind to each hormone, forming clusters that have a different color from unclustered gold nanoparticles. But only certain size clusters are optimal for this measurement, so knowing how light absorbance changes with cluster size makes it easier to design the biosensors to result in just the right sized clusters.

The NIST team first prepared samples of gold nanoparticles—a nanomaterial widely used in biology—in a standard cell culture solution, using their previously developed technique for creating samples with a controlled distribution of sizes***. The particles are allowed to agglomerate in gradually growing clusters and the clumping process is "turned off" after varying lengths of time by adding a stabilizing agent that prevents further agglomeration.

They then used a technique called analytical ultracentrifugation (AUC) to simultaneously sort the clusters by size and measure their light absorption. The centrifuge causes the nanoparticle clusters to separate by size, the smaller, lighter clusters moving more slowly than the larger ones. While this is happening, the sample containers are repeatedly scanned with light and the amount of light passing through the sample for each color or frequency is recorded. The larger the cluster, the more light is absorbed by lower frequencies. Measuring the absorption by frequency across the sample containers allows the researchers both to watch the gradual separation of cluster sizes and to correlate absorbed frequencies with specific cluster sizes.

Most previous measurements of absorption spectra for solutions of nanoparticles were able only to measure the bulk spectra—the absorption of all the different cluster sizes mixed together. AUC makes it possible to measure the quantity and distribution of each nanoparticle cluster without being confounded by other components in complex biological mixtures, such as proteins. The technique previously had been used only to make these measurements for single nanoparticles in solution. The NIST researchers are the first to show that the procedure also works for nanoparticle clusters.

* J.M. Zook, V. Rastogi, R.I. MacCuspie, A.M. Keene and J. Fagan. Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation. ACS Nano, Articles ASAP (As Soon As Publishable). Publication Date (Web): Sept. 3, 2011 DOI: 10.1021/nn202645b.
** HCG: Human chorionic gonadotropin.
*** See J.M. Zook, R.I. MacCuspie, L.E. Locascio, M.D. Halter and J.T. Elliott. Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology, published online Dec. 13, 2010 (DOI: 10.3109/17435390.2010.536615) and the Feb. 2, 2011, NIST Tech Beat article, "NIST Technique Controls Sizes of Nanoparticle Clusters for EHS Studies," at www.nist.gov/public_affairs/tech-beat/tb20110202.cfm#nanoparticles.

Michael E. Newman | EurekAlert!
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

How Obesity Promotes Breast Cancer

20.10.2017 | Life Sciences

How the smallest bacterial pathogens outwit host immune defences by stealth mechanisms

20.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>