Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved characterization of nanoparticle clusters for EHS and biosensors research

27.10.2011
The tendency of nanoparticles to clump together in solution—"agglomeration"—is of great interest because the size of the clusters plays an important role in the behavior of the materials.

Toxicity, the persistence of the nanomaterials in the environment, their efficacy as biosensors and, for that matter, the accuracy of experiments to measure these factors, are all known to be affected by agglomeration and cluster size. Recent work* at the National Institute of Standards and Technology (NIST) offers a way to measure accurately both the distribution of cluster sizes in a sample and the characteristic light absorption for each size. The latter is important for the application of nanoparticles in biosensors.


Clusters of roughly 30-nanometer gold nanoparticles imaged by transmission electron microscopy. (Color added for clarity.)
Credit: Keene, FDA

A good example of the potential application of the work, says NIST biomedical engineer Justin Zook, is in the development of nanoparticle biosensors for ultrasensitive pregnancy tests. Gold nanoparticles can be coated with antibodies to a hormone** produced by an embryo shortly after conception. Multiple gold nanoparticles can bind to each hormone, forming clusters that have a different color from unclustered gold nanoparticles. But only certain size clusters are optimal for this measurement, so knowing how light absorbance changes with cluster size makes it easier to design the biosensors to result in just the right sized clusters.

The NIST team first prepared samples of gold nanoparticles—a nanomaterial widely used in biology—in a standard cell culture solution, using their previously developed technique for creating samples with a controlled distribution of sizes***. The particles are allowed to agglomerate in gradually growing clusters and the clumping process is "turned off" after varying lengths of time by adding a stabilizing agent that prevents further agglomeration.

They then used a technique called analytical ultracentrifugation (AUC) to simultaneously sort the clusters by size and measure their light absorption. The centrifuge causes the nanoparticle clusters to separate by size, the smaller, lighter clusters moving more slowly than the larger ones. While this is happening, the sample containers are repeatedly scanned with light and the amount of light passing through the sample for each color or frequency is recorded. The larger the cluster, the more light is absorbed by lower frequencies. Measuring the absorption by frequency across the sample containers allows the researchers both to watch the gradual separation of cluster sizes and to correlate absorbed frequencies with specific cluster sizes.

Most previous measurements of absorption spectra for solutions of nanoparticles were able only to measure the bulk spectra—the absorption of all the different cluster sizes mixed together. AUC makes it possible to measure the quantity and distribution of each nanoparticle cluster without being confounded by other components in complex biological mixtures, such as proteins. The technique previously had been used only to make these measurements for single nanoparticles in solution. The NIST researchers are the first to show that the procedure also works for nanoparticle clusters.

* J.M. Zook, V. Rastogi, R.I. MacCuspie, A.M. Keene and J. Fagan. Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation. ACS Nano, Articles ASAP (As Soon As Publishable). Publication Date (Web): Sept. 3, 2011 DOI: 10.1021/nn202645b.
** HCG: Human chorionic gonadotropin.
*** See J.M. Zook, R.I. MacCuspie, L.E. Locascio, M.D. Halter and J.T. Elliott. Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology, published online Dec. 13, 2010 (DOI: 10.3109/17435390.2010.536615) and the Feb. 2, 2011, NIST Tech Beat article, "NIST Technique Controls Sizes of Nanoparticle Clusters for EHS Studies," at www.nist.gov/public_affairs/tech-beat/tb20110202.cfm#nanoparticles.

Michael E. Newman | EurekAlert!
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>