Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


An important breakthrough at the IRCM associated with osteoporosis

Researchers identify a new gene that could help identify individuals predisposed to developing the disease

Researchers at the Institut de recherches cliniques de Montréal (IRCM), directed by Dr. Jean Vacher, identified a new gene that modulates bone mass and that could become a risk factor for developing osteoporosis. This scientific breakthrough will be published tomorrow in the scientific journal Cell Metabolism.

Osteoporosis is a "silent" genetic disease characterized by low bone mineral density and deterioration of bone tissue, which leads to increased bone fragility and risk of fracture. In all cases, the disease is caused by an imbalance between the formation and resorption of bone tissue.

"The overall objective of our research is to understand the molecular and cellular mechanisms that determine the balance between bone formation and resorption (breakdown)," explains Dr. Vacher, Director of the Cellular Interactions and Development research unit at the IRCM. "Osteoblasts are responsible for making bones and work in synergy with osteoclasts, which reshape the bone. To gain insight into these complex mechanisms, we are studying the role of new genes that influence osteoclasts and osteoblasts."

The team of researchers recently isolated a gene that modulates osteoclasts. They found, in mice, that a loss of this gene's function leads to a significant increase in the number of osteoclasts, thereby generating an even higher level of bone resorption.

"We identified this gene as a novel modulator of bone mineral density in mice and humans," adds Dr. Vacher. "More importantly, we showed that the human gene could represent a new susceptibility factor for osteoporosis. Hence, this discovery will help identify individuals with a greater predisposition to the disease who could benefit from preventive measures."

According to Osteoporosis Canada, as many as two million Canadians suffer from osteoporosis. One in four women over the age of 50 has osteoporosis, and so does one in eight men over the same age. In addition, 80 per cent of hip fractures are related to the disease. These result in death in up to 20 per cent of cases, and disability in 50 per cent of those who survive.

Mathieu Ferron, graduate student from Dr. Vacher's laboratory, is the article's first author. This research project was conducted in collaboration with scientists at Université Laval in Québec and Washington University School of Medicine in Saint Louis.

Research carried out at the IRCM was funded by the Canadian Institutes of Health Research (CIHR) and the Natural Sciences and Engineering Research Council of Canada (NSERC). For more information on this discovery, please refer to the article summary published in Cell Metabolism.

About Dr. Jean Vacher

Jean Vacher obtained his Doctor of Science in biochemistry from the Université de Paris VII in France. He is Full IRCM Research Professor and Director of the Cellular Interactions and Development research unit. Dr. Vacher is a full research professor in the Department of Medicine (accreditation in molecular biology) at the Université de Montréal. He is also associate member of the Department of Medicine (Division of Experimental Medicine) at McGill University.

About the Institut de recherches cliniques de Montréal (IRCM)

Founded in 1967, the IRCM ( is currently comprised of 35 research units in various fields, namely immunity and viral infections, cardiovascular and metabolic diseases, cancer, neurobiology and development, systems biology and medicinal chemistry. It also houses three specialized research clinics, seven core facilities and three research platforms with state-of-the-art equipment. The IRCM employs 425 people and is an independent institution affiliated with the Université de Montréal. The IRCM clinic is associated to the Centre hospitalier de l'Université de Montréal (CHUM). The IRCM also maintains a long-standing association with McGill University.

Julie Langelier | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>