Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immunology: Vaccine hope for virile virus

05.07.2012
Exploiting the early immune response in Chikungunya fever promises to provide protection.

Chikungunya fever is a viral disease that has re-emerged to cause epidemics in the Pacific region within the last decade. It is caused by the Chikungunya virus (CHIKV), which is transmitted by mosquitoes and causes symptoms including fever, rash and joint pain.


A*STAR researchers have shown that the antibody produced in the initial immune response to CHIKV recognizes the protein E2 and binds to a specific site called E2EP3, seen here in red. This site projects from the surface of the virus, making it easily accessible to the antibody. © 2012 EMBO Molecular Medicine

It can be incapacitating, with some patients developing severe chronic symptoms, and it is sometimes fatal. The main current control measure is to prevent exposure to mosquitoes; a vaccine would reduce the threat of CHIKV.

Lisa Ng of the A*STAR Singapore Immunology Network and co-workers have now provided insight into the natural immune response that may help in developing a vaccine. Ng’s group showed previously that the initial immune response to CHIKV is spearheaded by a specific class of antibody that disables the virus when bound to it. Their latest research reveals a way to exploit this clinically.

Working with clinicians at the Tan Tock Seng Hospital, Ng and her team took blood samples from CHIKV-infected patients and tested them to see if they contained any antibodies that recognize proteins from the surface of the virus. They found that at early stages of recovery, patients’ blood contained large amounts of an antibody that targets a protein known as E2, which projects from the surface of CHIKV (see image). The same antibody was found in different groups of patients, showing that it is a reliable indicator of early infection.

The team confirmed that this antibody neutralizes CHIKV by adding blood samples to virus which was then used to infect susceptible human cells. If the blood samples contained the antibody, infection rates were reduced, whereas removing the antibody from the samples beforehand left infection rates high.

Having identified that the antibody recognizes E2, the researchers then tested its ability to recognize fragments of the protein. This allowed identification of the epitope, or the exact site on the protein, that the antibody binds to, which they called E2EP3.

When they vaccinated mice with a protein fragment equivalent to this epitope, the mice produced the same antibody in response. On subsequent infection with CHIKV, the vaccinated mice also showed milder symptoms, making the epitope a promising basis for a future vaccine in humans.

“[This study is] highly relevant for the rational design of CHIKV vaccines and for the development of diagnostics for optimal clinical management of patients,” says Ng. “It may also inspire similar studies with other arthritic arboviruses that in many parts of the world cause severe morbidity with extensive incapacitation.”

The A*STAR-affiliated researchers contributing to this research are from the Singapore Immunology Network and the Institute for Infocomm Research (I2R)

References:

Kam, Y-W et al. Early neutralizing IgG response to Chikungunya virus in infected patients targets a dominant linear epitope on the E2 glycoprotein. EMBO Molecular Medicine 4, 1–14 (2012). (Direct link to article below)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>