Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immunology: Vaccine hope for virile virus

05.07.2012
Exploiting the early immune response in Chikungunya fever promises to provide protection.

Chikungunya fever is a viral disease that has re-emerged to cause epidemics in the Pacific region within the last decade. It is caused by the Chikungunya virus (CHIKV), which is transmitted by mosquitoes and causes symptoms including fever, rash and joint pain.


A*STAR researchers have shown that the antibody produced in the initial immune response to CHIKV recognizes the protein E2 and binds to a specific site called E2EP3, seen here in red. This site projects from the surface of the virus, making it easily accessible to the antibody. © 2012 EMBO Molecular Medicine

It can be incapacitating, with some patients developing severe chronic symptoms, and it is sometimes fatal. The main current control measure is to prevent exposure to mosquitoes; a vaccine would reduce the threat of CHIKV.

Lisa Ng of the A*STAR Singapore Immunology Network and co-workers have now provided insight into the natural immune response that may help in developing a vaccine. Ng’s group showed previously that the initial immune response to CHIKV is spearheaded by a specific class of antibody that disables the virus when bound to it. Their latest research reveals a way to exploit this clinically.

Working with clinicians at the Tan Tock Seng Hospital, Ng and her team took blood samples from CHIKV-infected patients and tested them to see if they contained any antibodies that recognize proteins from the surface of the virus. They found that at early stages of recovery, patients’ blood contained large amounts of an antibody that targets a protein known as E2, which projects from the surface of CHIKV (see image). The same antibody was found in different groups of patients, showing that it is a reliable indicator of early infection.

The team confirmed that this antibody neutralizes CHIKV by adding blood samples to virus which was then used to infect susceptible human cells. If the blood samples contained the antibody, infection rates were reduced, whereas removing the antibody from the samples beforehand left infection rates high.

Having identified that the antibody recognizes E2, the researchers then tested its ability to recognize fragments of the protein. This allowed identification of the epitope, or the exact site on the protein, that the antibody binds to, which they called E2EP3.

When they vaccinated mice with a protein fragment equivalent to this epitope, the mice produced the same antibody in response. On subsequent infection with CHIKV, the vaccinated mice also showed milder symptoms, making the epitope a promising basis for a future vaccine in humans.

“[This study is] highly relevant for the rational design of CHIKV vaccines and for the development of diagnostics for optimal clinical management of patients,” says Ng. “It may also inspire similar studies with other arthritic arboviruses that in many parts of the world cause severe morbidity with extensive incapacitation.”

The A*STAR-affiliated researchers contributing to this research are from the Singapore Immunology Network and the Institute for Infocomm Research (I2R)

References:

Kam, Y-W et al. Early neutralizing IgG response to Chikungunya virus in infected patients targets a dominant linear epitope on the E2 glycoprotein. EMBO Molecular Medicine 4, 1–14 (2012). (Direct link to article below)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>