Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ID3 provides career counseling for blood progenitors, driving the creation of gamma-delta T cells

16.10.2009
Fox Chase researchers uncover process that determines the fate of white blood cells

Like an unusually forceful career counselor, the Id3 protein decides the fate of a given white blood cell precursor, according to researchers at Fox Chase Cancer Center. Their findings, published today in the journal Immunity, describe how Id3 directs blood cell progenitors to become gamma-delta T cells.

Gamma-delta T cells are unique in that they possess attributes of both the adaptive arm of the immune system, which is invigorated by vaccination, and the innate arm, which represents the body's first line of defense against infections.

"Unlike the other major type of T cells (alpha-beta), gamma-delta T cells seem to focus most of their efforts on protecting the body surfaces in contact with the outside world, like skin, gut, and lung and in fact are required to repel invaders at those sites," says co-author David Wiest, Ph.D., Fox Chase professor and co-leader of the center's Immune Cell Development and Host Defense Program. "Their origins have been something of a mystery and, as it turns out, their creation requires distinct molecular machinery than the other major type of T cells."

In recent years, studying the origins of blood cells has provided researchers with useful insights on how all the cells in the body form from a small group of embryonic stem cells. All blood cells originate from a type of stem cell – called hematopoietic ("blood-forming") stem cells – located in bone marrow. A small portion of these cells move on to the thymus – a small organ near the lungs – where their ultimate fate as one of many types of white blood cells is decided through a series of molecular pathways.

Among these cells are T cells, of which there are two recognized types, based on the structure of their most defining feature, the T Cell Receptor (TCR), which enables the cell to detect bits of foreign molecules called antigens. The majority of T cells are alpha-beta T cells, meaning their TCR are comprised of alpha and beta subunits. Only five percent of T cells are gamma-delta T cells, yet researchers believe that they have a remarkable effect on human health.

Using a mouse model of human blood cell development, Wiest and his colleagues demonstrated that gamma-delta T cells require the Id3 gene for formation. Moreover, they showed that elevating the levels of Id3 alone was sufficient to push progenitor cells in the thymus into becoming delta-gamma T cells. This is not true of the development of other major T lineage, alpha-beta, for which the function of Id3 is dispensable.

One of the weapons utilized by gamma-delta cells is a substance called interferon-gamma, which has known anti-viral and anti-tumor properties. Interferon-gamma is also known to contribute inflammation at the site of infection, such as a wound, but also may be a source of autoimmune disease.

"By better understanding the process that drives gamma-delta T cell production, we may one day become capable of producing them outside of the body for use as a therapy in people when warranted," Wiest says.

"While we are only beginning to understand the functions of gamma-delta T cells, one setting where they might be useful therapeutically, is cancer," Wiest says, "since gamma-delta T cells seem to be well equipped to combat cutaneous malignancies."

Funding for this research comes from grants from the National Institutes for Health, an appropriation from the Commonwealth of Pennsylvania, and the Fox Chase Keystone Program in Blood Cell Development and Cancer.

Founded in 1904 in Philadelphia as the nation's first cancer hospital, Fox Chase became one of the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, treatment, and community outreach. For more information, visit Fox Chase's web site at www.fccc.edu or call 1-888-FOX-CHASE or 1-888-369-2427.

Greg Lester | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>