Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How does human embryo begin to develop?

20.07.2011
Hebrew University scientists show for first time how early human embryo acquires its shape through ‘organizer’ cells

How is it that a disc-like cluster of cells transforms within the first month of pregnancy into an elongated embryo? This mechanism is a mystery that man has tried to unravel for millennia.

The first significant step towards understanding the issue was made nearly a century ago in experiments conducted by the German embryologists Hans Spemann and Hilde Mangold. The two used early newt embryos and identified a group of cells within them which, upon transplantation, formed a two-headed tadpole.

In trying to understand why this happened, they concluded that what occurred is that the transplanted cells organized the vicinity into which they were placed to form a typical embryonic shape. They therefore dubbed such cells “organizer” cells. The newt embryo possessed both its own organizers and the transplanted ones, both of which organized nearby cells to form a head structure.

Recently, Israeli scientists from the Hebrew University of Jerusalem have managed to generate human organizer cells, using human embryonic stem cells. Based on the similarity that dominates the initial developmental processes of all vertebrates, the group raised the human cells in conditions which recapitulate those of early amphibian embryogenesis. Within two days, the human cells started expressing genes characteristic of the organizer cells.

To verify that these cells derived from human embryonic stem cells posses a true organizing ability, the researchers repeated Spemann and Mangold’s experiments. Only this time, the human cells, rather than those of amphibians, were transplanted into frog embryos.

The midline of an amphibian embryo is marked by a neural tube – a tissue destined to form the embryo's central nervous system. To the group's astonishment, some of the frog embryos that were transplanted with the human cells possessed not one but two neural tubes. The second tube was composed from frog cells, proving that the injected human cells organized the cells in their vicinity to acquire a tubular shape.

The research was conducted by Nadav Sharon, a graduate student under the supervision of Nissim Benvenisty, the Hebert Cohn Professor of Cancer Research at the Alexander Silberman Institute of Life Sciences at the Hebrew University, in collaboration with Abraham Fainsod, the Wolfson Family Professor of Genetics at the Hebrew University-Hadassah Medical School, and was published in a recent issue of the Stem Cells journal.

Shape determination during human embryonic development is an extremely important process, at which any aberration might lead to miscarriage or the birth of a severely defected newborn. The identification of the human organizer should allow better understanding of this process. Furthermore, the ability of the human organizer cells to shape a frog neural tube may assist in forming human neural tubes in culture, from which neural cells could be obtained for transplantation into people with spinal damage, though much further research would be required to reach that stage.

For further information: Jerry Barach,
Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>