Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How does human embryo begin to develop?

Hebrew University scientists show for first time how early human embryo acquires its shape through ‘organizer’ cells

How is it that a disc-like cluster of cells transforms within the first month of pregnancy into an elongated embryo? This mechanism is a mystery that man has tried to unravel for millennia.

The first significant step towards understanding the issue was made nearly a century ago in experiments conducted by the German embryologists Hans Spemann and Hilde Mangold. The two used early newt embryos and identified a group of cells within them which, upon transplantation, formed a two-headed tadpole.

In trying to understand why this happened, they concluded that what occurred is that the transplanted cells organized the vicinity into which they were placed to form a typical embryonic shape. They therefore dubbed such cells “organizer” cells. The newt embryo possessed both its own organizers and the transplanted ones, both of which organized nearby cells to form a head structure.

Recently, Israeli scientists from the Hebrew University of Jerusalem have managed to generate human organizer cells, using human embryonic stem cells. Based on the similarity that dominates the initial developmental processes of all vertebrates, the group raised the human cells in conditions which recapitulate those of early amphibian embryogenesis. Within two days, the human cells started expressing genes characteristic of the organizer cells.

To verify that these cells derived from human embryonic stem cells posses a true organizing ability, the researchers repeated Spemann and Mangold’s experiments. Only this time, the human cells, rather than those of amphibians, were transplanted into frog embryos.

The midline of an amphibian embryo is marked by a neural tube – a tissue destined to form the embryo's central nervous system. To the group's astonishment, some of the frog embryos that were transplanted with the human cells possessed not one but two neural tubes. The second tube was composed from frog cells, proving that the injected human cells organized the cells in their vicinity to acquire a tubular shape.

The research was conducted by Nadav Sharon, a graduate student under the supervision of Nissim Benvenisty, the Hebert Cohn Professor of Cancer Research at the Alexander Silberman Institute of Life Sciences at the Hebrew University, in collaboration with Abraham Fainsod, the Wolfson Family Professor of Genetics at the Hebrew University-Hadassah Medical School, and was published in a recent issue of the Stem Cells journal.

Shape determination during human embryonic development is an extremely important process, at which any aberration might lead to miscarriage or the birth of a severely defected newborn. The identification of the human organizer should allow better understanding of this process. Furthermore, the ability of the human organizer cells to shape a frog neural tube may assist in forming human neural tubes in culture, from which neural cells could be obtained for transplantation into people with spinal damage, though much further research would be required to reach that stage.

For further information: Jerry Barach,
Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016

Jerry Barach | Hebrew University of Jerusalem
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>