Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HSCI researchers extend human epigenomic map

09.08.2013
Meissner group boost NIH-funded effort

Ten years ago, scientists announced the end of the Human Genome Project, the international attempt to learn which combination of four nucleotides—adenine, thymine, cytosine, and guanine—is unique to homo sapien DNA.

This biological alphabet helped researchers identify the approximately 25,000 genes coded in the human genome, but as time went on, questions arose about how all of these genes are controlled.

Now, Harvard Stem Cell Institute Principal Faculty member Alexander Meissner, PhD, reports another milestone, this time contributing to the multilayered NIH-funded human Roadmap Epigenomics Project. Epigenetics is the study of how the over 200 human cell types (e.g., muscle cells, nerve cells, liver cells, etc.) can have an identical compliment of genes but express them differently. Part of the answer lies in the way that DNA is packaged, with tight areas silencing genes and open areas allowing for genes to be translated into proteins. Stem cells differentiate into various cell types by marking specific genes that will be open and closed after division.

New research by Meissner, published online as a letter in the journal Nature, describes the dynamics of DNA methylation across a wide range of human cell types. Chemically, these marks are the addition of a methyl group—one carbon atom surrounded by three hydrogen atoms (CH3)—anywhere a cytosine nucleotide sits next to a guanine nucleotide in the DNA sequence.

Meissner's team, led by graduate student Michael Ziller, at Harvard's Department of Stem Cell and Regenerative Biology mapped nearly all of the 28-million cytosine-guanine pairings among the 3-billion nucleotides that make up human DNA, and then wanted to know which of these 28 million are dynamic or static across all the cell types.

"When we asked, how many of them are changing, the answer was a very small fraction," said Meissner. The researchers found that eighty percent of the 28-million cytosine-guanine pairs are largely unchanged and might not participate in the regulation of the cell types, while the dynamic ones sit at sites that are relevant for gene expression—in particular distal regulatory sites such as enhancers. "Importantly this allows us to improve our current approaches of mapping this important mark through more targeted strategies that still capture most of the dynamics," Meissner said.

The methylation map generated by the Meissner lab is part of a larger National Institutes of Health (NIH) consortium to look at all of the different epigenetic modification that are found across a large number of human cell and tissue types. Earlier this year, the Meissner's lab recorded all of the gene expression and multi-layered epigenetic dynamics that take place in early stem cell differentiation when they prepare to divide into their next fated cell type.

In addition to his roles at Harvard, Meissner is affiliated with the Broad Institute and the New York Stem Cell Foundation. Only a graduate student in 2007, he has quickly established himself as a leader in the epigenetics field. "It just happens to be that we're at the right time and at the right place, both physically and sort of in time, " he said. "Just five years ago, we would have had the same question, but we wouldn't have had the same tools to answer the question."

The research was funded by the National Institutes of Health and the New York Stem Cell Foundation..

B. D. Colen | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>