Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HSCI researchers extend human epigenomic map

09.08.2013
Meissner group boost NIH-funded effort

Ten years ago, scientists announced the end of the Human Genome Project, the international attempt to learn which combination of four nucleotides—adenine, thymine, cytosine, and guanine—is unique to homo sapien DNA.

This biological alphabet helped researchers identify the approximately 25,000 genes coded in the human genome, but as time went on, questions arose about how all of these genes are controlled.

Now, Harvard Stem Cell Institute Principal Faculty member Alexander Meissner, PhD, reports another milestone, this time contributing to the multilayered NIH-funded human Roadmap Epigenomics Project. Epigenetics is the study of how the over 200 human cell types (e.g., muscle cells, nerve cells, liver cells, etc.) can have an identical compliment of genes but express them differently. Part of the answer lies in the way that DNA is packaged, with tight areas silencing genes and open areas allowing for genes to be translated into proteins. Stem cells differentiate into various cell types by marking specific genes that will be open and closed after division.

New research by Meissner, published online as a letter in the journal Nature, describes the dynamics of DNA methylation across a wide range of human cell types. Chemically, these marks are the addition of a methyl group—one carbon atom surrounded by three hydrogen atoms (CH3)—anywhere a cytosine nucleotide sits next to a guanine nucleotide in the DNA sequence.

Meissner's team, led by graduate student Michael Ziller, at Harvard's Department of Stem Cell and Regenerative Biology mapped nearly all of the 28-million cytosine-guanine pairings among the 3-billion nucleotides that make up human DNA, and then wanted to know which of these 28 million are dynamic or static across all the cell types.

"When we asked, how many of them are changing, the answer was a very small fraction," said Meissner. The researchers found that eighty percent of the 28-million cytosine-guanine pairs are largely unchanged and might not participate in the regulation of the cell types, while the dynamic ones sit at sites that are relevant for gene expression—in particular distal regulatory sites such as enhancers. "Importantly this allows us to improve our current approaches of mapping this important mark through more targeted strategies that still capture most of the dynamics," Meissner said.

The methylation map generated by the Meissner lab is part of a larger National Institutes of Health (NIH) consortium to look at all of the different epigenetic modification that are found across a large number of human cell and tissue types. Earlier this year, the Meissner's lab recorded all of the gene expression and multi-layered epigenetic dynamics that take place in early stem cell differentiation when they prepare to divide into their next fated cell type.

In addition to his roles at Harvard, Meissner is affiliated with the Broad Institute and the New York Stem Cell Foundation. Only a graduate student in 2007, he has quickly established himself as a leader in the epigenetics field. "It just happens to be that we're at the right time and at the right place, both physically and sort of in time, " he said. "Just five years ago, we would have had the same question, but we wouldn't have had the same tools to answer the question."

The research was funded by the National Institutes of Health and the New York Stem Cell Foundation..

B. D. Colen | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>