Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Go with the Flow


Flow-through peptide synthesis and cell-based assays on Teflon-coated paper

The synthesis of peptides and proteins is an extremely complex matter, because they must be built up one amino acid at a time in repeated reaction and washing steps. Solid-phase synthesis has made this easier. Canadian researchers introduced a new variant of this technique in the journal Angewandte Chemie.

In their system, parallel syntheses take place in small regions on a paper support. The resulting peptide arrangements can be used in cell-based assays or in the search for 3D materials that support cell adhesion and growth.

In classical solid-phase synthesis, the growing peptide chain is fixed to a solid support—usually a polymer bead—so that the reagents can be rapidly and easily washed away after each step. Parallel solid-phase synthesis, known as SPOT synthesis, was developed as an alternative in the 1990s. This allows a large number of peptides to be obtained on a planar support with a small surface area.

SPOT synthesis has since been adapted for other applications, such as cell-based screening. The problem is that existing SPOT systems are not well-suited for chemical reactions. When individual drops of reagent are added by pipette, they wet small areas of the membrane—the SPOTs.

The circular spot of solvent absorbed by the membrane determines the size of the “reaction vessel”. Unlike in classical solid-phase synthesis, this limits the amounts of reagent, and flow-through conditions are not possible. This significantly limits the possible yields of the reactions.

A team headed by Frédérique Deiss and Ratmir Derda at the University of Alberta (Canada) has now found an elegant solution to this problem. The researchers used a Teflon coating to form a pattern of solvent-repellent barriers on a paper support. The pattern restricts the liquids to specific Teflon-free zones on the paper, forming small “reaction vessels” that can hold a larger volume than the usual SPOTs.

This not only allows for the use of excess volumes of reagents, but also allows for a flow-through reaction because the larger volume ensures for gravity-driven flow of the reagent solution through the paper. The flow rate can be varied by using paper of different porosity. This significantly improves yields.

There is an additional advantage to this method: the paper can be stacked or folded into thicker three-dimensional structures. The researchers were able to identify various peptides among those immobilized on the surface that support cell adhesion, growth, or differentiation in a three-dimensional environment.

About the Author

Ratmir Derda started his career as an assistant professor at the department of Chemistry at the University of Alberta in 2011. He is a principal investigator at the Alberta Glycomics Centre and Sentinel Bioactive Paper Network. In 2012, he received a Rising Star in Global Health Award from Grand Challenges Canada.

Author: Ratmir Derda, University of Alberta, Edmonton (Canada),

Title: Flow-Through Synthesis on Teflon-Patterned Paper to Produce Peptide Arrays That Can Be Used for Cell-Based Assays

Angewandte Chemie International Edition, Permalink to the article:

Ratmir Derda | Angewandte Chemie

Further reports about: Flow SPOT adhesion cell-based classical peptides reaction reactions synthesis volume

More articles from Life Sciences:

nachricht Two decades of training students and experts in tracking infectious disease
27.11.2015 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Increased carbon dioxide enhances plankton growth, opposite of what was expected
27.11.2015 | Bigelow Laboratory for Ocean Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>