Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glowing White

16.03.2012
Solvent-free luminescent organic liquids for organic electronics
The future will be dominated by organic electronics, as opposed to current silicon-based technology. In the journal Angewandte Chemie, an international team of researchers has now introduced a new luminescent organic liquid that can be applied like ink. When two additional dyes are dissolved in this liquid, it forms a white luminescent paste that may offer a new way to make devices like large displays and white light-emitting diodes.

Current approaches to organic electronics mainly involve plastic film supports with conducting paths and components made of organic molecules inexpensively printed or glued on. Organic electronics are interesting as potential “disposable electronics” for applications like electronic price tags. Even more intriguing are devices that cannot be produced with standard electronics, such as flexible films with integrated circuits for use as novel flat-panel displays or “electronic paper”. A third area of interest involves applications such as photovoltaics that are dependent on economical mass production in order to be profitable.

The development of large components like displays requires organic coatings that emit white light and are inexpensive to produce. Previous gel- or solvent-based liquid “dyes” are easy to apply, but are often not colorfast or are barely luminescent after drying. For solids, on the other hand, processing is often too complex.

A team led by Takashi Nakanishi at the National Institute for Materials Science in Tsukaba (Japan) has taken a different approach: they use uncharged organic substances that are luminescent liquids at room temperature and require no solvent. The electronically active parts of the molecules consist of linear chains of carbon atoms linked by ð-conjugated double bonds. This means that electrons can move freely over a large portion of the molecule. The core is shielded by low-viscosity organic side chains that ensure that the core areas do not interact with each other and that the substance remains liquid.

The researchers were able to prepare a liquid that fluoresces blue under UV light. They then dissolved green- and orange-emitting dyes in this solvent-free liquid. This results in a durable, stable white-emitting paste whose glow can be adjusted from a “cool” bluish white to a “warm” yellowish white by changing the ratio of the dyes. It is possible to use this ink directly in a roller-ball pen for writing, or to apply it with a brush on a wide variety of surfaces. Application to a commercially available UV-LED allowed the researchers to produce white light-emitting diodes.

About the Author
Dr. Takashi Nakanishi is a Principal Researcher in the Polymer Materials Unit at the National Institute for Materials Science, Japan. His primary research interest is development of morphology-controlled soft materials towards applications in organic/polymeric electronics for use in real-world applications. He is the recipient of the Chemical Society of Japan Award for Young Chemists.
Author: Takashi Nakanishi, National Institute for Materials Science, Tsukuba (Japan), http://www.nims.go.jp/macromol/nakanishi_eng/index.html
Title: Solvent-Free Luminescent Organic Liquids
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201108853

Takashi Nakanishi | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.nims.go.jp/macromol/nakanishi_eng/index.html

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>