Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Glowing White

Solvent-free luminescent organic liquids for organic electronics
The future will be dominated by organic electronics, as opposed to current silicon-based technology. In the journal Angewandte Chemie, an international team of researchers has now introduced a new luminescent organic liquid that can be applied like ink. When two additional dyes are dissolved in this liquid, it forms a white luminescent paste that may offer a new way to make devices like large displays and white light-emitting diodes.

Current approaches to organic electronics mainly involve plastic film supports with conducting paths and components made of organic molecules inexpensively printed or glued on. Organic electronics are interesting as potential “disposable electronics” for applications like electronic price tags. Even more intriguing are devices that cannot be produced with standard electronics, such as flexible films with integrated circuits for use as novel flat-panel displays or “electronic paper”. A third area of interest involves applications such as photovoltaics that are dependent on economical mass production in order to be profitable.

The development of large components like displays requires organic coatings that emit white light and are inexpensive to produce. Previous gel- or solvent-based liquid “dyes” are easy to apply, but are often not colorfast or are barely luminescent after drying. For solids, on the other hand, processing is often too complex.

A team led by Takashi Nakanishi at the National Institute for Materials Science in Tsukaba (Japan) has taken a different approach: they use uncharged organic substances that are luminescent liquids at room temperature and require no solvent. The electronically active parts of the molecules consist of linear chains of carbon atoms linked by ð-conjugated double bonds. This means that electrons can move freely over a large portion of the molecule. The core is shielded by low-viscosity organic side chains that ensure that the core areas do not interact with each other and that the substance remains liquid.

The researchers were able to prepare a liquid that fluoresces blue under UV light. They then dissolved green- and orange-emitting dyes in this solvent-free liquid. This results in a durable, stable white-emitting paste whose glow can be adjusted from a “cool” bluish white to a “warm” yellowish white by changing the ratio of the dyes. It is possible to use this ink directly in a roller-ball pen for writing, or to apply it with a brush on a wide variety of surfaces. Application to a commercially available UV-LED allowed the researchers to produce white light-emitting diodes.

About the Author
Dr. Takashi Nakanishi is a Principal Researcher in the Polymer Materials Unit at the National Institute for Materials Science, Japan. His primary research interest is development of morphology-controlled soft materials towards applications in organic/polymeric electronics for use in real-world applications. He is the recipient of the Chemical Society of Japan Award for Young Chemists.
Author: Takashi Nakanishi, National Institute for Materials Science, Tsukuba (Japan),
Title: Solvent-Free Luminescent Organic Liquids
Angewandte Chemie International Edition, Permalink to the article:

Takashi Nakanishi | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>