Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists identify biological mechanism that plays key role in early-onset dementia

09.10.2012
Findings explain how protein deficiency contributes to neurodegenerative disease
Using animal models, scientists at the Gladstone Institutes have discovered how a protein deficiency may be linked to frontotemporal dementia (FTD)—a form of early-onset dementia that is similar to Alzheimer's disease. These results lay the foundation for therapies that one day may benefit those who suffer from this and related diseases that wreak havoc on the brain.

As its name implies, FTD is a fatal disease that destroys cells, or neurons, that comprise the frontal and temporal lobes of the brain—as opposed to Alzheimer's which mainly affects brain's memory centers in the hippocampus. Early symptoms of FTD include personality changes, such as increased erratic or compulsive behavior. Patients later experience difficulties speaking and reading, and often suffer from long-term memory loss. FTD is usually diagnosed between the ages of 40 and 65, with death occurring within 2 to 10 years after diagnosis. No drug exists to slow, halt or reverse the progression of FTD.

A new study led by Gladstone Senior Investigator Robert V. Farese, Jr., MD, offers new hope in the fight against this and other related conditions. In the latest issue of the Journal of Clinical Investigation, available today online, Dr. Farese and his team show how a protein called progranulin prevents a class of cells called microglia from becoming "hyperactive." Without adequate progranulin to keep microglia in check, this hyperactivity becomes toxic, causing abnormally prolonged inflammation that destroys neurons over time—and leads to debilitating symptoms.

"We have known that a lack of progranulin is linked to neurodegenerative conditions such as FTD, but the exact mechanism behind that link remained unclear," said Dr. Farese, who is also a professor at the University of California, San Francisco (UCSF), with which Gladstone is affiliated. "Understanding the inflammatory process in the brain is critical if we are to develop better treatments not only for FTD, but for other forms of brain injury such as Parkinson's disease, Huntington's disease and multiple sclerosis (MS)—which are likely also linked to abnormal microglial activity."

Microglia—which are a type of immune cells that reside in the CNS—normally secrete progranulin. Early studies on traumatic CNS injury found that progranulin accumulates at the injury site alongside microglia, suggesting that both play a role in injury response. So, Dr. Farese and his team designed a series of experiments to decipher the nature of the relationship between progranulin and microglia. First, the team generated genetically modified mice that lack progranulin. They then monitored how the brains of these mice responded to toxins, comparing this reaction to a control group.

"As expected, the toxin destroys neurons in both sets of mice—but the progranulin-deficient mice lost twice as many neurons as the control group," said Lauren Herl Martens, a Gladstone and UCSF graduate student and the study's lead author. "This showed us that progranulin is crucial for neuron survival. We then wanted to see whether a lack of progranulin itself would injure these cells—even in the absence of toxins."

In a petri dish, the researchers artificially prevented microglia from secreting progranulin and monitored how these modified microglia interacted with neurons. They observed that a significantly greater number of neurons died in the presence of the progranulin-deficient microglia when compared to unmodified microglia. Other experiments revealed the process' underlying mechanism. Microglia are the CNS's first line of defense. When the microglia sense toxins or injury, they trigger protective inflammation—which can become toxic to neurons if left unchecked. Dr. Farese's team discovered that progranulin works by tempering the microglia's response, thereby minimizing inflammation. Without progranulin, the microglia are unrestricted—and induce prolonged and excessive inflammation that leads to neuron damage—and can contribute to the vast array of symptoms that afflict sufferers FTD and other fatal forms of brain disease.

"However, we found that boosting progranulin levels in microglia reduced inflammation—keeping neurons alive and healthy in cell culture," explained Dr. Farese. "Our next step is to determine if this method could also work in live animals. We believe this to be a therapeutic strategy that could, for example, halt the progression of FTD. More broadly, our findings about progranulin and inflammation could have therapeutic implications for devastating neurodegenerative diseases such as Alzheimer's, Parkinson's and MS."
Other scientists who participated in this research at Gladstone include Sami Barmada, PhD, Ping Zhou, MD, Li Gan, PhD and Steve Finkbeiner, MD, PhD. Funding came from a variety of sources, including the Consortium for Frontotemporal Dementia Research, the ALS Association and the National Institutes of Health.

About the Gladstone Institutes
Gladstone is an independent and nonprofit biomedical-research organization dedicated to accelerating the pace of scientific discovery and innovation to prevent, treat and cure cardiovascular, viral and neurological diseases. Gladstone is affiliated with the University of California, San Francisco.

Anne Holden | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>