Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists identify biological mechanism that plays key role in early-onset dementia

09.10.2012
Findings explain how protein deficiency contributes to neurodegenerative disease
Using animal models, scientists at the Gladstone Institutes have discovered how a protein deficiency may be linked to frontotemporal dementia (FTD)—a form of early-onset dementia that is similar to Alzheimer's disease. These results lay the foundation for therapies that one day may benefit those who suffer from this and related diseases that wreak havoc on the brain.

As its name implies, FTD is a fatal disease that destroys cells, or neurons, that comprise the frontal and temporal lobes of the brain—as opposed to Alzheimer's which mainly affects brain's memory centers in the hippocampus. Early symptoms of FTD include personality changes, such as increased erratic or compulsive behavior. Patients later experience difficulties speaking and reading, and often suffer from long-term memory loss. FTD is usually diagnosed between the ages of 40 and 65, with death occurring within 2 to 10 years after diagnosis. No drug exists to slow, halt or reverse the progression of FTD.

A new study led by Gladstone Senior Investigator Robert V. Farese, Jr., MD, offers new hope in the fight against this and other related conditions. In the latest issue of the Journal of Clinical Investigation, available today online, Dr. Farese and his team show how a protein called progranulin prevents a class of cells called microglia from becoming "hyperactive." Without adequate progranulin to keep microglia in check, this hyperactivity becomes toxic, causing abnormally prolonged inflammation that destroys neurons over time—and leads to debilitating symptoms.

"We have known that a lack of progranulin is linked to neurodegenerative conditions such as FTD, but the exact mechanism behind that link remained unclear," said Dr. Farese, who is also a professor at the University of California, San Francisco (UCSF), with which Gladstone is affiliated. "Understanding the inflammatory process in the brain is critical if we are to develop better treatments not only for FTD, but for other forms of brain injury such as Parkinson's disease, Huntington's disease and multiple sclerosis (MS)—which are likely also linked to abnormal microglial activity."

Microglia—which are a type of immune cells that reside in the CNS—normally secrete progranulin. Early studies on traumatic CNS injury found that progranulin accumulates at the injury site alongside microglia, suggesting that both play a role in injury response. So, Dr. Farese and his team designed a series of experiments to decipher the nature of the relationship between progranulin and microglia. First, the team generated genetically modified mice that lack progranulin. They then monitored how the brains of these mice responded to toxins, comparing this reaction to a control group.

"As expected, the toxin destroys neurons in both sets of mice—but the progranulin-deficient mice lost twice as many neurons as the control group," said Lauren Herl Martens, a Gladstone and UCSF graduate student and the study's lead author. "This showed us that progranulin is crucial for neuron survival. We then wanted to see whether a lack of progranulin itself would injure these cells—even in the absence of toxins."

In a petri dish, the researchers artificially prevented microglia from secreting progranulin and monitored how these modified microglia interacted with neurons. They observed that a significantly greater number of neurons died in the presence of the progranulin-deficient microglia when compared to unmodified microglia. Other experiments revealed the process' underlying mechanism. Microglia are the CNS's first line of defense. When the microglia sense toxins or injury, they trigger protective inflammation—which can become toxic to neurons if left unchecked. Dr. Farese's team discovered that progranulin works by tempering the microglia's response, thereby minimizing inflammation. Without progranulin, the microglia are unrestricted—and induce prolonged and excessive inflammation that leads to neuron damage—and can contribute to the vast array of symptoms that afflict sufferers FTD and other fatal forms of brain disease.

"However, we found that boosting progranulin levels in microglia reduced inflammation—keeping neurons alive and healthy in cell culture," explained Dr. Farese. "Our next step is to determine if this method could also work in live animals. We believe this to be a therapeutic strategy that could, for example, halt the progression of FTD. More broadly, our findings about progranulin and inflammation could have therapeutic implications for devastating neurodegenerative diseases such as Alzheimer's, Parkinson's and MS."
Other scientists who participated in this research at Gladstone include Sami Barmada, PhD, Ping Zhou, MD, Li Gan, PhD and Steve Finkbeiner, MD, PhD. Funding came from a variety of sources, including the Consortium for Frontotemporal Dementia Research, the ALS Association and the National Institutes of Health.

About the Gladstone Institutes
Gladstone is an independent and nonprofit biomedical-research organization dedicated to accelerating the pace of scientific discovery and innovation to prevent, treat and cure cardiovascular, viral and neurological diseases. Gladstone is affiliated with the University of California, San Francisco.

Anne Holden | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Diamond Lenses and Space Lasers at Photonics West

15.12.2017 | Trade Fair News

A better way to weigh millions of solitary stars

15.12.2017 | Physics and Astronomy

New epidemic management system combats monkeypox outbreak in Nigeria

15.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>