Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists identify biological mechanism that plays key role in early-onset dementia

09.10.2012
Findings explain how protein deficiency contributes to neurodegenerative disease
Using animal models, scientists at the Gladstone Institutes have discovered how a protein deficiency may be linked to frontotemporal dementia (FTD)—a form of early-onset dementia that is similar to Alzheimer's disease. These results lay the foundation for therapies that one day may benefit those who suffer from this and related diseases that wreak havoc on the brain.

As its name implies, FTD is a fatal disease that destroys cells, or neurons, that comprise the frontal and temporal lobes of the brain—as opposed to Alzheimer's which mainly affects brain's memory centers in the hippocampus. Early symptoms of FTD include personality changes, such as increased erratic or compulsive behavior. Patients later experience difficulties speaking and reading, and often suffer from long-term memory loss. FTD is usually diagnosed between the ages of 40 and 65, with death occurring within 2 to 10 years after diagnosis. No drug exists to slow, halt or reverse the progression of FTD.

A new study led by Gladstone Senior Investigator Robert V. Farese, Jr., MD, offers new hope in the fight against this and other related conditions. In the latest issue of the Journal of Clinical Investigation, available today online, Dr. Farese and his team show how a protein called progranulin prevents a class of cells called microglia from becoming "hyperactive." Without adequate progranulin to keep microglia in check, this hyperactivity becomes toxic, causing abnormally prolonged inflammation that destroys neurons over time—and leads to debilitating symptoms.

"We have known that a lack of progranulin is linked to neurodegenerative conditions such as FTD, but the exact mechanism behind that link remained unclear," said Dr. Farese, who is also a professor at the University of California, San Francisco (UCSF), with which Gladstone is affiliated. "Understanding the inflammatory process in the brain is critical if we are to develop better treatments not only for FTD, but for other forms of brain injury such as Parkinson's disease, Huntington's disease and multiple sclerosis (MS)—which are likely also linked to abnormal microglial activity."

Microglia—which are a type of immune cells that reside in the CNS—normally secrete progranulin. Early studies on traumatic CNS injury found that progranulin accumulates at the injury site alongside microglia, suggesting that both play a role in injury response. So, Dr. Farese and his team designed a series of experiments to decipher the nature of the relationship between progranulin and microglia. First, the team generated genetically modified mice that lack progranulin. They then monitored how the brains of these mice responded to toxins, comparing this reaction to a control group.

"As expected, the toxin destroys neurons in both sets of mice—but the progranulin-deficient mice lost twice as many neurons as the control group," said Lauren Herl Martens, a Gladstone and UCSF graduate student and the study's lead author. "This showed us that progranulin is crucial for neuron survival. We then wanted to see whether a lack of progranulin itself would injure these cells—even in the absence of toxins."

In a petri dish, the researchers artificially prevented microglia from secreting progranulin and monitored how these modified microglia interacted with neurons. They observed that a significantly greater number of neurons died in the presence of the progranulin-deficient microglia when compared to unmodified microglia. Other experiments revealed the process' underlying mechanism. Microglia are the CNS's first line of defense. When the microglia sense toxins or injury, they trigger protective inflammation—which can become toxic to neurons if left unchecked. Dr. Farese's team discovered that progranulin works by tempering the microglia's response, thereby minimizing inflammation. Without progranulin, the microglia are unrestricted—and induce prolonged and excessive inflammation that leads to neuron damage—and can contribute to the vast array of symptoms that afflict sufferers FTD and other fatal forms of brain disease.

"However, we found that boosting progranulin levels in microglia reduced inflammation—keeping neurons alive and healthy in cell culture," explained Dr. Farese. "Our next step is to determine if this method could also work in live animals. We believe this to be a therapeutic strategy that could, for example, halt the progression of FTD. More broadly, our findings about progranulin and inflammation could have therapeutic implications for devastating neurodegenerative diseases such as Alzheimer's, Parkinson's and MS."
Other scientists who participated in this research at Gladstone include Sami Barmada, PhD, Ping Zhou, MD, Li Gan, PhD and Steve Finkbeiner, MD, PhD. Funding came from a variety of sources, including the Consortium for Frontotemporal Dementia Research, the ALS Association and the National Institutes of Health.

About the Gladstone Institutes
Gladstone is an independent and nonprofit biomedical-research organization dedicated to accelerating the pace of scientific discovery and innovation to prevent, treat and cure cardiovascular, viral and neurological diseases. Gladstone is affiliated with the University of California, San Francisco.

Anne Holden | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>