Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genomic sequencing method enables 'smarter' anaysis of individual cells

23.07.2012
Applications include studying single cells that form malignant tumors

Only by viewing a Seurat painting at close range can you appreciate the hidden complexities of pointillism – small, distinct dots of pure color applied in patterns to form an image from a distance. Similarly, biologists and geneticists have long sought to analyze profiles of genes at the single cell level but technology limitations have only allowed a view from afar until now.

Research published in the July 22 issue of Nature Biotechnology, shows for the first time that a novel genomic sequencing method called Smart-Seq can help scientists conduct in-depth analyses of clinically relevant single cells. Smart-Seq has many possible applications, including helping scientists to better understand the complexities of tumor development. This is vitally important as many clinically important cells exist only in small numbers and require single cell analysis. The study was conducted by a team of researchers from the Ludwig Institute for Cancer Research, the Karolinska Institutet in Sweden, the University of California, San Diego and Illumina Inc.

"While our results are preliminary, we showed that it is possible to do studies of individual, clinically relevant cells," says biomedical scientist Rickard Sandberg, researcher at the Ludwig Institute for Cancer Research and principal investigator at the Department of Cell and Molecular Biology, Karolinska Institutet. "Cancer researchers around the world will now be able to analyze these cells more systematically to enable them to produce better methods of diagnosis and therapy in the future."

Previous research showed that it is common for one gene to give rise to several forms of the same protein through different cut-and-paste configurations of its raw copy. The phenomenon, known as splicing, means that cells from the same tissue are not so homogenous as previously thought.

The research team has now taken its study a step further and developed a method for the complete mapping of the gene expression of individual cells. In showing which genes are active, it is now possible to accurately describe and study differences in gene expression between individual cells from the same tissue.

"Scientists have been waiting for a long time for such a method to come along, but technical limitations have made it difficult to produce a sufficiently sensitive and robust method," says Dr. Sandberg. "The method has several areas of applications including cancer research where it can be used to study which cell types form cancer tumors in individual patients."

In the study, scientists studied tumor cells in the blood system of a patient with recurring malignant melanoma. Once they had identified the tumor cells in a regular blood test, the team used Smart-Seq to analyze their gene expression. By using this method, researchers could show that the tumor cells had activated many important membrane proteins that are understood to be responsible for their ability to evade the body's monitoring system and spread in the blood or lymph.

The study was conducted with the support of several funding bodies, including the European Research Council, the Swedish Research Council, the Foundation for Strategic Research, the Åke Wiberg Foundation and the National Institutes of Health (NIH).

Publication: 'Full-Length mRNA-Seq from single cell levels of RNA and individual circulating tumor cells', Daniel Ramsköld, Shujun Luo, Yu-Chieh Wang, Robin Li, Qiaolin Deng, Omid R. Faridani, Gregory A. Daniels, Irina Khrebtukova, Jeanne F. Loring, Louise C. Laurent, Gary P. Schroth and Rickard Sandberg, Nature Biotechnology, online publication 22 July 2012.

About Karolinska Institute

Karolinska Institutet is one of the world's leading medical universities. It accounts for over 40 percent of the medical academic research conducted in Sweden and offers the country's broadest range of education in medicine and health sciences. Since 1901 the Nobel Assembly at Karolinska Institutet has selected the Nobel laureates in Physiology or Medicine.

About The Ludwig Institute for Cancer Research

LICR is an international non-profit organization committed to improving the understanding and control of cancer through integrated laboratory and clinical discovery. Leveraging its worldwide network of investigators and the ability to sponsor and conduct its own clinical trials, the Institute is actively engaged in translating its discoveries into applications for patient benefit. Since its establishment in 1971, the Institute has expended more than $1.5 billion on cancer research.

For further information please contact the KI press room at +46 8 524 860 77 or Pressinfo@ki.se or visit http://ki.se/pressroom and Rachel Steinhardt, rsteinhardt@licr.org or +1-212-450-1582.

Rachel Steinhardt | EurekAlert!
Further information:
http://www.licr.org

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>