Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genomic sequencing method enables 'smarter' anaysis of individual cells

23.07.2012
Applications include studying single cells that form malignant tumors

Only by viewing a Seurat painting at close range can you appreciate the hidden complexities of pointillism – small, distinct dots of pure color applied in patterns to form an image from a distance. Similarly, biologists and geneticists have long sought to analyze profiles of genes at the single cell level but technology limitations have only allowed a view from afar until now.

Research published in the July 22 issue of Nature Biotechnology, shows for the first time that a novel genomic sequencing method called Smart-Seq can help scientists conduct in-depth analyses of clinically relevant single cells. Smart-Seq has many possible applications, including helping scientists to better understand the complexities of tumor development. This is vitally important as many clinically important cells exist only in small numbers and require single cell analysis. The study was conducted by a team of researchers from the Ludwig Institute for Cancer Research, the Karolinska Institutet in Sweden, the University of California, San Diego and Illumina Inc.

"While our results are preliminary, we showed that it is possible to do studies of individual, clinically relevant cells," says biomedical scientist Rickard Sandberg, researcher at the Ludwig Institute for Cancer Research and principal investigator at the Department of Cell and Molecular Biology, Karolinska Institutet. "Cancer researchers around the world will now be able to analyze these cells more systematically to enable them to produce better methods of diagnosis and therapy in the future."

Previous research showed that it is common for one gene to give rise to several forms of the same protein through different cut-and-paste configurations of its raw copy. The phenomenon, known as splicing, means that cells from the same tissue are not so homogenous as previously thought.

The research team has now taken its study a step further and developed a method for the complete mapping of the gene expression of individual cells. In showing which genes are active, it is now possible to accurately describe and study differences in gene expression between individual cells from the same tissue.

"Scientists have been waiting for a long time for such a method to come along, but technical limitations have made it difficult to produce a sufficiently sensitive and robust method," says Dr. Sandberg. "The method has several areas of applications including cancer research where it can be used to study which cell types form cancer tumors in individual patients."

In the study, scientists studied tumor cells in the blood system of a patient with recurring malignant melanoma. Once they had identified the tumor cells in a regular blood test, the team used Smart-Seq to analyze their gene expression. By using this method, researchers could show that the tumor cells had activated many important membrane proteins that are understood to be responsible for their ability to evade the body's monitoring system and spread in the blood or lymph.

The study was conducted with the support of several funding bodies, including the European Research Council, the Swedish Research Council, the Foundation for Strategic Research, the Åke Wiberg Foundation and the National Institutes of Health (NIH).

Publication: 'Full-Length mRNA-Seq from single cell levels of RNA and individual circulating tumor cells', Daniel Ramsköld, Shujun Luo, Yu-Chieh Wang, Robin Li, Qiaolin Deng, Omid R. Faridani, Gregory A. Daniels, Irina Khrebtukova, Jeanne F. Loring, Louise C. Laurent, Gary P. Schroth and Rickard Sandberg, Nature Biotechnology, online publication 22 July 2012.

About Karolinska Institute

Karolinska Institutet is one of the world's leading medical universities. It accounts for over 40 percent of the medical academic research conducted in Sweden and offers the country's broadest range of education in medicine and health sciences. Since 1901 the Nobel Assembly at Karolinska Institutet has selected the Nobel laureates in Physiology or Medicine.

About The Ludwig Institute for Cancer Research

LICR is an international non-profit organization committed to improving the understanding and control of cancer through integrated laboratory and clinical discovery. Leveraging its worldwide network of investigators and the ability to sponsor and conduct its own clinical trials, the Institute is actively engaged in translating its discoveries into applications for patient benefit. Since its establishment in 1971, the Institute has expended more than $1.5 billion on cancer research.

For further information please contact the KI press room at +46 8 524 860 77 or Pressinfo@ki.se or visit http://ki.se/pressroom and Rachel Steinhardt, rsteinhardt@licr.org or +1-212-450-1582.

Rachel Steinhardt | EurekAlert!
Further information:
http://www.licr.org

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>