Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genes involved in antibiotic resistance vary within a species

Case Western Reserve University School of Medicine scientist leads comparative analysis of six genomes of Acinetobacter baumannii

The recent emergence of multidrug resistance (MDR) in Acinetobacter baumannii, a bacteria that causes infections primarily among seriously ill patients in the intensive care unit who may have reduced immune systems, has raised concern in health care settings worldwide.

When comparing the genome sequence of three MDR A. baumannii isolates and three drug-susceptible A. baumannii isolates, Case Western Reserve University School of Medicine found that one variation of bacteria would respond to antibiotics while another variation of the same bacteria may not.

A. baumannii is currently recognized by the Infectious Diseases Society of America as one of the most important pathogens threatening our health care delivery system.

Over the last 10-15 years, A. baumannii has become increasingly resistant to antibiotics and now more than one-third of infections are MDR, which means these pathogens are resistant to at least three different classes of antibiotics. This pattern of resistance to many antibiotics limits the ability of physicians to treat serious infections caused by A. baumannii.

The study, led by Mark Adams, Ph.D., Associate Professor in the Department of Genetics at Case Western Reserve University School of Medicine, is titled "Comparative Genome Sequence Analysis of Multidrug-Resistant Acinetobacter baumannii", and is in the December issue of the Journal of Bacteriology.

Adams first sequenced the genome of an MDR isolate and his collaborator in Buffalo, Steven Gill, Ph.D., Associate Professor of Oral Biology at SUNY Buffalo, sequenced two drug susceptible isolates to learn more about the genes (the genome contains the complete set of genes) that control resistance to antibiotics. Adams then compared the new sequence with genomes of other MDR and drug susceptible isolates, comparing six complete genomes.

What they found is that within a hospital or even a person, there can be a variation within the bacteria which means that it can affect how the infection reacts to antibiotics.

"A key conclusion of our study is that even very closely related isolates of A. baumannii can differ significantly in the set of resistance genes that they carry," said Adams. "It is known that resistance genes can be shared between bacteria (horizontal gene transfer), and it appears that this is a frequent event, with genes entering a genome and being deleted even across a single outbreak."

"We used to think—you treat this bacteria with this drug—but now we know that you have to look more carefully not just at the bacteria but at each one's genetic characteristics," said Adams. "This is an argument for targeted therapy in infectious disease because you want to select an antibiotic that will be effective against the particular genetic characteristics of the bug that's causing the infection."

The scientists also found that each isolate has a somewhat different set of genes.

"About three-fourths of the genes are shared by all the isolates, while the remainder are unique to different subsets," said Adams. "We identified 475 genes that are shared by all six clinical isolates of A. baumannii but are not present in a closely related Acinetobacter species that does not cause infections. These genes merit further study to help figure out what makes A. baumannii able to live in association with humans and cause disease."

Christina DeAngelis | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht How a fungus inhibits the immune system of plants
27.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht The gene of autumn colours
27.10.2016 | Hokkaido University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>