Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The gene sequencing that everyone can afford in future

DNA sequencing seems to be an eternal theme for human due to the desire of ascertaining the nature of life.

Professor QIAN Linmao and his group from Tribology Research Institute, Southwest Jiaotong University were working on the optimization of the third-generation sequencing technique based on nanopore.

This is a typical nanopore sequencing process.

Credit: ©Science China Press

They found that long chain DNA with low salt concentration is more conducive to the nanopore sequencing process. Their work, entitled "Effect of chain length on the conformation and friction behaviour of DNA", was published in SCIENCE CHINA Technological Sciences. 2013, Vol 56(12).

When Watson and Crick proposed the double helix structure of DNA in 1953, a significant era was opened for a new stage of the life sciences. Since the detection of DNA sequence can help people prevent and treat many genetic diseases, DNA sequencing technology has been one of the important means of modern biological research. The first-generation sequencing was proposed in the 1970s, by which it took more than 10 years and $1 billion to complete the Human Genome Project.

In 2005, the second-generation sequencing technology was developed, by which the sequencing period for individual human genome could be reduced to be only 1 week. In recent years, the third-generation sequencing based on nanopore has been widespread concerned as a potential candidate for achieving the ''$1000 genome'' goal set by the US National Institutes of Health.

In a typical nanopore sequencing process, when a DNA molecule passes through a nanopore, a characteristic blockade ionic current can be detected to determine the information of the DNA molecule (shown in the image). It exhibits many advantages, such as accurate, rapid, low-cost and so on. Nevertheless, there are several challenges in nanopore sequencing. For example, the coiled conformation of a DNA molecule makes it difficult for one end of a DNA molecule to reach into a nanopore, and the high translocation speed made it extremely difficult to distinguish the desired current signal. Therefore, it is essential to slove the problem and improve the nanopore sequencing technique.

In August 2013, Professor Qian and his team reported that, low salt concentration is more conducive to the sequencing process, since it can not only make DNA molecules easier to reach into nanopore through extended conformation, but also reduce the passage rate by high friction between DNA molecule and the wall of nanopore. In the present study, the team confirmed that, with the increase of chain length, the DNA molecule became more extended, which can make DNA molecules reach into and pass through the nanopore readily. Additionally, the effect of chain length on the friction of DNA was insignificant under low normal load which indicated that the nanopore sequencing technique was not restricted by the chain length of DNA molecules. In summary, long chain DNA with low salt concentration is more conducive to the third-generation sequencing technique based on nanopore and the expectation of longer reads could be realized in the future.

"In the future, everyone could afford to carry out their own gene sequencing," Qian says, "Based on our results, the nanopore sequencing technique is not restricted by the chain length of DNA molecules. It may improve the efficiency of sequencing, which means that the cost of gene sequencing could be further reduced."

On the strength of these findings, the researchers are beginning an extensive project to optimize the parameters in the third-generation sequencing. The results will benefit the development of third-generation sequencing, but the benefits will likely extend further, Qian says.

"There is much more beyond optimization of the nanopore sequencing," Qian says, "A lot of basic research needs to be done and we will work on it."

Corresponding AuthorF

QIAN Linmao
See the article: Wang M, Cui S X, Yun B J, Qian L M. Effect of chain length on the conformation and friction behaviour of DNA. SCI CHINA Tech Sci, 2013 Vol. 56 (12): 2927-2933

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 50 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

YAN Bei | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>