Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The gene sequencing that everyone can afford in future

06.12.2013
DNA sequencing seems to be an eternal theme for human due to the desire of ascertaining the nature of life.

Professor QIAN Linmao and his group from Tribology Research Institute, Southwest Jiaotong University were working on the optimization of the third-generation sequencing technique based on nanopore.


This is a typical nanopore sequencing process.

Credit: ©Science China Press

They found that long chain DNA with low salt concentration is more conducive to the nanopore sequencing process. Their work, entitled "Effect of chain length on the conformation and friction behaviour of DNA", was published in SCIENCE CHINA Technological Sciences. 2013, Vol 56(12).

When Watson and Crick proposed the double helix structure of DNA in 1953, a significant era was opened for a new stage of the life sciences. Since the detection of DNA sequence can help people prevent and treat many genetic diseases, DNA sequencing technology has been one of the important means of modern biological research. The first-generation sequencing was proposed in the 1970s, by which it took more than 10 years and $1 billion to complete the Human Genome Project.

In 2005, the second-generation sequencing technology was developed, by which the sequencing period for individual human genome could be reduced to be only 1 week. In recent years, the third-generation sequencing based on nanopore has been widespread concerned as a potential candidate for achieving the ''$1000 genome'' goal set by the US National Institutes of Health.

In a typical nanopore sequencing process, when a DNA molecule passes through a nanopore, a characteristic blockade ionic current can be detected to determine the information of the DNA molecule (shown in the image). It exhibits many advantages, such as accurate, rapid, low-cost and so on. Nevertheless, there are several challenges in nanopore sequencing. For example, the coiled conformation of a DNA molecule makes it difficult for one end of a DNA molecule to reach into a nanopore, and the high translocation speed made it extremely difficult to distinguish the desired current signal. Therefore, it is essential to slove the problem and improve the nanopore sequencing technique.

In August 2013, Professor Qian and his team reported that, low salt concentration is more conducive to the sequencing process, since it can not only make DNA molecules easier to reach into nanopore through extended conformation, but also reduce the passage rate by high friction between DNA molecule and the wall of nanopore. In the present study, the team confirmed that, with the increase of chain length, the DNA molecule became more extended, which can make DNA molecules reach into and pass through the nanopore readily. Additionally, the effect of chain length on the friction of DNA was insignificant under low normal load which indicated that the nanopore sequencing technique was not restricted by the chain length of DNA molecules. In summary, long chain DNA with low salt concentration is more conducive to the third-generation sequencing technique based on nanopore and the expectation of longer reads could be realized in the future.

"In the future, everyone could afford to carry out their own gene sequencing," Qian says, "Based on our results, the nanopore sequencing technique is not restricted by the chain length of DNA molecules. It may improve the efficiency of sequencing, which means that the cost of gene sequencing could be further reduced."

On the strength of these findings, the researchers are beginning an extensive project to optimize the parameters in the third-generation sequencing. The results will benefit the development of third-generation sequencing, but the benefits will likely extend further, Qian says.

"There is much more beyond optimization of the nanopore sequencing," Qian says, "A lot of basic research needs to be done and we will work on it."

Corresponding AuthorF

QIAN Linmao
linmao@swjtu.edu.cn
See the article: Wang M, Cui S X, Yun B J, Qian L M. Effect of chain length on the conformation and friction behaviour of DNA. SCI CHINA Tech Sci, 2013 Vol. 56 (12): 2927-2933

http://tech.scichina.com:8082/sciEe/EN/abstract/abstract512538.shtml

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 50 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

http://www.scichina.com/

YAN Bei | EurekAlert!
Further information:
http://www.scichina.org
http://www.scichina.com/

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>