Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit flies – fermented-fruit connoisseurs – are relentless party crashers

05.02.2014
That fruit fly joining you just moments after you poured that first glass of cabernet, has just used its poppy-seed-sized brain to conduct a finely-choreographed search, one that’s been described for the first time by researchers at the University of Washington.

The search mission is another example of fruit flies executing complex behaviors with very little “computational” power, their brains having 100,000 neurons compared to house flies with 300,000 neurons and humans with 100 billion.


Floris van Breugel

Fruit flies use their antennae, the two pill shaped bumps sticking out from the front of the head, to detect odors.

Such computational efficiency is the envy of robot makers everywhere and of interest to neuroscientists wanting to know more about the brains of insects, animals and humans, according to Floris van Breugel, a UW post-doctoral researcher and lead author of a paper in the Feb. 3 issue of Current Biology. Michael Dickinson, UW professor of biology, is the paper’s co-author.

It’s the smell of fermentation that draws fruit flies, genus Drosophila, to your wine or the fruit ripening on the kitchen counter, the same smell that leads them to food in orchards and compost heaps outdoors.

If not already in your house when you pour your wine, fruit flies come calling from outside, following attractive odors through open doors and windows, being small enough to slip around the edges of screens if not simply passing through the openings in the mesh.

Fruit flies use their antennae to detect odors and it’s long been known they have a keen sense of smell. But odors travel in whiffs of scent, not steady streams, particularly outdoors in the wind. Nothing this detailed has ever been published about how free-flying fruit flies conduct successful searches, van Breugel said.

Using wind tunnel results, van Breugel and Dickinson described the reflexive surging upwind when an odor is detected and then the casting about when the whiff of scent is lost.

One surprise – and another example of how efficiently fruit flies use their neurons – was that in the presence of attractive odors, flies began using their eyes to look for roundish objects that might be fruit, van Breugel said. Without an attractive odor, flies ignore such objects.

“Because an odor plume can be so chaotic, just tracking the plume may or may not get them to the source of the smell,” he said. “So that’s when visual exploration starts to take over. They start to explore objects with visual contrast that could be the source of the odor. They land and if it’s not something to eat, they continue the search.” A glass of wine would be a contrasting shape, like fruit, that would merit their attention.

Flies, a dozen at a time, were observed trying to locate an attractive odor at one end of a 3-foot-long wind tunnel specially designed by Dickinson and his lab group. The tunnel generates a steady flow of air about the velocity of a light wind. Ten cameras collected more than 70 hours of flight data including 50,000 individual trajectories.

During the work, van Breugel wasn’t expecting to find evidence that flies would search for food visually. Then he noticed them exploring the floor of the wind tunnel, which had a checkerboard pattern, when odors were present but not in their absence. He devised an experiment without the checkerboard, but with a round shape on the floor and each of two walls. When an attractive odor was present, fruit flies explored around and landed on those shapes.

“Their senses interact in very sophisticated ways so what they smell literally influences what they see,” Dickinson said. “These interactions between vision and olfaction is part of the secret of how flies do so much with such tiny brains, they have clever ways to combine information from different senses.”

Modeling how insect brains function could be useful in developing efficient robots, indeed one of the funders of the research is the U.S. Air Force Office of Scientific Research.

“The study of behavior has often been very subjective, but we’re at the point where we can collect data with enough richness and information that we can come up with quantitative interpretations of what’s happening,” van Breugel said. For example, van Breugel and Dickinson modeled the behavior of flies as a simple algorithm of three reflexes: surging, casting and attraction to small visual features. An algorithm is a set of rules that precisely defines a sequence of operations whether in a brain or in a computer.

Using a computer simulation, the authors showed that this simple three-step algorithm could reliably guide a fruit fly to food without the need for a long range plan or mental map.

“As we quantify more of their behaviors in such detail, we could discover more efficient and robust algorithms for controlling robotic systems of all kinds,” van Breugel said.

“Although finding fruit flies in your wine or beer can be a bit annoying, I hope people will pause to admire the tenacity of these clever little creatures,” Dickinson said. “They are really just hungry animals looking for something to eat, and have no intention of ruining your happy hour.”

While working on this project in the Dickinson lab, van Breugel earned his doctorate from California Institute of Technology.

Other funding for the work came from the National Science Foundation, the Paul G. Allen Family Foundation and the Hertz Foundation.

For more information:
Van Breugel: floris@uw.edu
Dickinson: 206-221-1928, flyman@uw.edu

Sandra Hines | EurekAlert!
Further information:
http://www.uw.edu
http://www.washington.edu/news/2014/02/04/fruit-flies-fermented-fruit-connoisseurs-are-relentless-party-crashers/

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

For pollock surveys in Alaska, things are looking up

22.05.2015 | Agricultural and Forestry Science

Mission possible: This device will self-destruct when heated

22.05.2015 | Power and Electrical Engineering

NOAA's GOES-R satellite begins environmental testing

22.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>