Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Friends with benefits

19.07.2012
As mushrooms evolve to live symbiotically with trees, they give up parts of their DNA associated with decomposing cellulose, Harvard researchers find

Harvard researchers are unlocking the evolutionary secrets of one of the world's most recognizable groups of mushrooms, and to do it, they're using one of the most comprehensive fungal "family trees" ever created.

As reported in paper published July 18 in PLoS ONE, Associate Professor of Organismic and Evolutionary Biology Anne Pringle and Ben Wolfe, a Post-Doctoral Fellow in FAS Center for Systems Biology, studied the genetics of more 100 species of Amanita mushrooms – about one-sixth of the genus' total diversity – to create an elaborate phylogeny showing how each species is related to one another.

Arguably the most widely-recognized group of mushrooms in the world, Amanita mushrooms have appeared in popular culture ranging from Fantasia to the Super Mario Brothers video games. Though it includes a number of edible species, such as the Amanita caesarea, the group is probably best known for its many toxic species, including the death-cap mushroom.

Armed with their family tree, Pringle and Wolfe were able to determine that Amanita evolution has largely been away from species that help decompose organic material and toward those that live symbiotically on trees and their roots. More interestingly, they found that the transition came at a steep price – the loss of the genes associated with breaking down cellulose.

"There had been earlier suggestions that this type of gene loss might be taking place, but our study is the first precise test of that hypothesis," Pringle said. "The idea makes sense – if you're going to actively form a cooperative relationship with a tree, you probably shouldn't simultaneously be trying to break it apart and eat it. But it's a very tricky dance to form these kinds of tight, cooperative interactions, and I think this work shows there is a cost associated with that. You have to change, you have to commit, and it can become a sort of gilded cage – these mushrooms are very successful, but they're stuck where they are."

In addition to many species which are housed in the Farlow Herbarium, located at the Harvard University Herbaria, Wolfe spent months tracking rare species in far-flung locations like London and Hawaii.

After extracting DNA from the samples, Wolfe used the genetic codes of four different genes to determine how the various species are related to one another. He then used a process called ancestral state reconstruction to show that the mushrooms have switched from being decomposers to being symbiotic with trees only once in their evolutionary history. Once the mushrooms switched to this new symbiotic lifestyle, they didn't go back to their free-living past.

Ultimately, Pringle said, the paper highlights one reason she finds such symbiotic partnerships "intrinsically interesting" – for all their apparent benefits, the cost can be high.

"I think the really interesting thing is this idea that once you become symbiotic, some of your machinery is lost," she said. "It seems like a dead end in some ways – you have to make this change to enter this niche, but once you're there, you can't go back – you've lost the capacity to be free-living."

Peter Reuell | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>