Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Friends with benefits

19.07.2012
As mushrooms evolve to live symbiotically with trees, they give up parts of their DNA associated with decomposing cellulose, Harvard researchers find

Harvard researchers are unlocking the evolutionary secrets of one of the world's most recognizable groups of mushrooms, and to do it, they're using one of the most comprehensive fungal "family trees" ever created.

As reported in paper published July 18 in PLoS ONE, Associate Professor of Organismic and Evolutionary Biology Anne Pringle and Ben Wolfe, a Post-Doctoral Fellow in FAS Center for Systems Biology, studied the genetics of more 100 species of Amanita mushrooms – about one-sixth of the genus' total diversity – to create an elaborate phylogeny showing how each species is related to one another.

Arguably the most widely-recognized group of mushrooms in the world, Amanita mushrooms have appeared in popular culture ranging from Fantasia to the Super Mario Brothers video games. Though it includes a number of edible species, such as the Amanita caesarea, the group is probably best known for its many toxic species, including the death-cap mushroom.

Armed with their family tree, Pringle and Wolfe were able to determine that Amanita evolution has largely been away from species that help decompose organic material and toward those that live symbiotically on trees and their roots. More interestingly, they found that the transition came at a steep price – the loss of the genes associated with breaking down cellulose.

"There had been earlier suggestions that this type of gene loss might be taking place, but our study is the first precise test of that hypothesis," Pringle said. "The idea makes sense – if you're going to actively form a cooperative relationship with a tree, you probably shouldn't simultaneously be trying to break it apart and eat it. But it's a very tricky dance to form these kinds of tight, cooperative interactions, and I think this work shows there is a cost associated with that. You have to change, you have to commit, and it can become a sort of gilded cage – these mushrooms are very successful, but they're stuck where they are."

In addition to many species which are housed in the Farlow Herbarium, located at the Harvard University Herbaria, Wolfe spent months tracking rare species in far-flung locations like London and Hawaii.

After extracting DNA from the samples, Wolfe used the genetic codes of four different genes to determine how the various species are related to one another. He then used a process called ancestral state reconstruction to show that the mushrooms have switched from being decomposers to being symbiotic with trees only once in their evolutionary history. Once the mushrooms switched to this new symbiotic lifestyle, they didn't go back to their free-living past.

Ultimately, Pringle said, the paper highlights one reason she finds such symbiotic partnerships "intrinsically interesting" – for all their apparent benefits, the cost can be high.

"I think the really interesting thing is this idea that once you become symbiotic, some of your machinery is lost," she said. "It seems like a dead end in some ways – you have to make this change to enter this niche, but once you're there, you can't go back – you've lost the capacity to be free-living."

Peter Reuell | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>