Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel forensic technique to be applied to decade-old murder probe

15.01.2009
A pioneering forensic scientist at Northamptonshire Police and the University of Leicester is being called on by US force officers to tackle a decade-old murder case.

Dr John Bond, Scientific Support Manager at Northamptonshire Police and Honorary Research Fellow at the University of Leicester Forensic Research Centre, is collaborating with Bristol Police Department, Connecticut.

He is being asked to probe the murder of a well-known and respected businessman who was shot in the bedroom of his own home. Later this month a detective from Connecticut, Detective Garrie Dorman, will meet with Dr Bond at Northampton in order see if his pioneering research technique can shed new light on the crime.

Dr Bond has developed a method that enables scientists to ‘visualise fingerprints’ on metal (eg bullet casings) even after the print itself has been removed. He and colleagues conducted a study into the way fingerprints can corrode metal surfaces. The technique can enhance – after firing– a fingerprint that has been deposited on a small calibre metal cartridge case before it is fired.

The technique has been cited by Time Magazine as one of the top 50 inventions of 2008.

Detective Dorman said: “On February 10, 1998, Louis "Pete" LaFontaine was found shot to death in his home on Stafford Avenue in Bristol, Connecticut. Mr. LaFontaine was a resident of Bristol for many years and owned operated a successful appliance repair shop on Park Street. Mr. LaFontaine was well known throughout the City of Bristol, and his murder shocked the community and devastated his friends and family. The Bristol Police have conducted an extensive investigation into the murder of Mr. LaFontaine, but despite interviewing countless individuals, analyzing forensic evidence, and executing a number of search warrants, the murder remains unsolved. Despite this, the murder is still being actively investigated by Bristol Police Detectives and the State’s Attorney’s Office.

“I want to thank Dr. Bond and his staff, as well as the Northamptonshire Police and the University of Leicester Forensic Research Centre for providing us with assistance in this investigation. Dr. Bond’s procedure is a tremendous advancement in forensic science, and has the potential to be a valuable tool in many criminal investigations. Detectives have logged countless hours into this investigation since 1998, and have developed a great deal of information on the facts and circumstances surrounding the murder of Mr. LaFontaine. Fingerprint evidence on a shell casing would certainly bring us much closer to identifying Mr. LaFontaine’s killer.”

Dr Bond has already worked with a number of US police forces on reopening ‘cold cases’ and has found latent prints on shell casings.

Dr Bond said "We very much look forward to Detective Dorman's visit and hope we are able to assist his enquiry. We have found fingerprints on shell casings in a number of cases recently that are assisting police in the US and are confident that if fingerprint corrosion is present on Detective Dorman's casings we will find it."

• The Force hopes to sell the process – which has been patented worldwide – to interested buyers who could run the operation on a commercial basis or manufacture units to sell on to law enforcement agencies worldwide. This could generate benefits for both organisations.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>