Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food soil stuck to surfaces can hold bacteria in food processing factories

10.09.2008
Tiny amounts of food soil stuck to surfaces can act as a reservoir for potentially pathogenic bacteria. This food may help bacteria to survive industrial cleaning regimes in food processing factories, scientists heard today (Wednesday 10 September 2008) at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin.

Researchers from Manchester Metropolitan University have discovered that standard ultraviolet (UV) light and detection techniques may not show up the minute quantities of food soil that are stuck to surfaces, making it difficult to decide on the best way to clean them.

Even stainless steel surfaces can have tiny quantities of soil of unknown composition stuck to them, leading to possible contamination of food with pathogenic bacteria. "Tiny amounts of soil are enough to provide nutrients and a reservoir for contaminating bacteria to survive the cleaning processes, leading to food spoilage later," says Dr Kathryn Whitehead from Manchester Metropolitan University, UK. "The soil should be identified to make sure effective cleaning regimes are used on food preparation surfaces."

The researchers compared different methods used for the detection of food residues to determine which one was the best for different industries, including chemical and physicochemical methods, microscopy and rapid industrial methods such as UV light. They found that using more complex analytical methods is the most effective way to identify the food soil and develop a suitable cleaning regime.

"Some methods are not as sensitive as others at detecting food residue and micro-organisms in the food industries. A rapid industrial technique using UV light may be optimised to detect soil," says Dr Whitehead. "Our results also showed that different techniques may be better suited to different disciplines."

The researchers suggest that knowing the type of soil build-up on food surfaces, can lead to recommendations for the best strengths and types of cleaning products to help shift the residues. In some cases this may mean using lower strength cleaners, rather than higher concentration products. This should lead to a greater level of hygiene in the food industry.

"By using more precise methods to detect food residue and micro-organisms on surfaces, it may be possible that different cleaners could be used to target key fouling components," says Dr Whitehead. "We hope our work will lead to a greater level of hygiene in the food industry."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>